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DEVELOPMENT OF AN ACCURATE WIDE RANGE ULTRA HIGH
VACUUM GAUGE CALIBRATION METHOD

By Peter Fowler and F. J. Brock

SUMMARY

During the past year and one-half, under National Aeronautics

and Space Administration Contract No. NAS_-3967, the National
Research Corporation has been working on!the development of an
accurate, wide range, vacuum gauge calibration method. This
method of cal_bration applies pressure attenuation, atomic Leam,
and cryopumping techniques to a system such that in a volume
having extremely low background gas density, is formed an atomic
beam having a precisely known density which is variable over
the useful range of operation of ion gauges and mass spectrometers.
Under the program, an analysis of the conceptual design of the I
calibration system and its components was made. A kinetic theory
analysis of the gas flow in each component of the system was
made to determine the important system parameters and establish _
their optimum value or required range such that the maximum
dynamic range of bean density was obtained and the background
density was minimized.

IA prototype apparatus was constructed in order to experi-
mentally evaluate the components of the system. _Two types of
porous Vycor glass plugs were made and their conductance measured
with a probable error of less than 0.5%. The conductance of
porous Vycor was determined to be independent of pressure to
within 0.5% up to a pressure of 5200 Torr, which corresponds to
a Knudsen number of 1.7. This implies a dynamic range of pressure
in the calibration system gas source of at least 350.

Measurement of orifice conductance for nearly ideal aper-
tures was made at pressures corresponding to Knudsen numbers as
small as 0.75. The orifice conductance was found to deviate less

than 1% from that expected for free molecular flow for Knudsen

numbers greater than 12. The deviation from free molecular flow
for a Knudsen number of 0.75 was measured to be _ 7.5%.

The prototype calibration system was installed in an extreme
high vacuum system and its performance evaluated. The signal-to-
noise ratio (beam to background pressure ratio) for argon was

i
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found to be of the order of 460 for a cryopump temperature of
ll°K and 40 for 12OK. These ratios indicate that a sufficiently

low background gas density for proper calibration system per-

formance can be maintained in a cavity cooled to the tempera-

ture of liquid helium (4.2°K).

An accumulative error analysis of the calibration system

was made to establish the absolute calibration accuracy attainable.

In this analysis, the maximum probable deviation of the actual

performance from the predicted performance was determined and

evaluated in terms of the accuracy of measurement of individual

system parameters and the accuracy with which the constraints

were satisfied. The anaJysis showed that for the average proba-
ble error found to be attainable in the individual parameters,

the accumulated probable error of the calibration system could
be maintained less than 5%.

In the work completed to date, consider_ble confidence has

been developed that the proposed method of calibration will have

the desired accuracy and range° However. additional research is
required to determine: i) the flow properties of gases other

than argon through porous glass, 2) the minimum a_tainable back- j
ground pressure in the cryopump and gauge enclosure_ 3) the angu- l

lar distribution of molecules in the molecular beam, and 4) the

orifice conductance, accurately, for small Knudsen n_._aers. _

i. INTRODUCTION

The pressure gauges and mass spectrometers _.,_"use in

analyzing upper atmosphere and interblanetary g_ must have

a known response over a wide pressure range. [_ is thus re-
quired that there exist an accurate calibration method to

cover this wide pressure range and that the calibrations per-
formed have reference to a widely accepted absolute pressure

standard. The purpose of this investigation is to develop and
test the elements of such a calibration method.

Ideally, it is preferable to place a vacuum gauge in a

perfectly clean, empty, inert vacuum system, into which may be
introduced an accurately known, controllable, gas pressure.

The nearest actual approach to this ideal is to place the gauge
in an accurately known flux of a molecular beam, operating in

an extreme high vacuum system. I

L,

ii
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Such a system has been investigated. It consists of a high

pressure Bas source which supplies gas through a porous plug
: to a molecular furnace from which is extracted the molecular

beam to be injected into a cryopumped gauge calibration cavzty,

The pressure range over which the gas source is operated is _

within the measurement range of a precision rotating piston
gauge for which the National Bureau of Standards will provide
certification.

2. THEORY OF CALIBRATION SYSTEM

Consider a chamber which serves as a gas pressure source,

maintained at pressure Po from which the gas effuses in _ p_
molecular flow through a porous plug, having a conductance C . =

The quantity of gas effusing is then _P

t

= C p _ : (2_,0.1"1_ _'"
Qp p o ° _. - .-_,._

Consider further the effusing gas to enter a second chamber,

the molecular furnace, in one wall of which is a molecular Lemn_

forming aperture that is a plane, circular, ideal aperture of _ = _"

area Sa and conductance. Ca . It is assumed that the gas density :
outside of Sa is mazntazned negligibly small. If the pressure, -_:_
p, in the molecular furnace is maintained low enough such that .-._.

flow through the aperture is free molecular effusion, Knudsen I ___
has shown that for a gas in thermal equilibrium with molec "lar

furnace walls, the quantzty of gas passing outward through Sa
__ " per second is •

Qf = pCa = p -..._, (2.0.2)- '_'

where v is the mean molecular speed in the furnace. Deviations

from this behavior for high pressures and flow rate_ will be
discussed in later sections.

When conditions of steady flow have been established, the _

flow rate into the furnace must be equal to that out of the

furnace, or

1966018675-010



I

= pC o (2 0 3)PoCp a ° •

Anticipating the requirements of a wide range calibration

system, and therefore a large pressure attenuation between the

gas source and the molecular furnace, a second aperture of con-

ductance, C is introduced in the molecular furnace wall so that

in place of EquationI2.0.3!, we have

po c = p(C + C )o (2.0.4)p a

Out of the beam aperture in the furnace, the molecules
effuse into the half space beyond with a flux distribution,

in the limit that the mean free path of furnace molecules is

very large compared to _he aperture dimensions, given by 2

= S v n cos e dN
• a _ , (2oOo5)

where dm is the elementary solid angle at an angle 0 with

the axis of the beam (aperture normal).

[
Now, for a detector of area Ab distant _ along the

normal to the orifice, the above flux also is given by

= nbAb_b' {2o0o6)

where nb is the beam density and vb is the mean beam velocity.
ExpressionI2.0.61 is seen to hold for _ sufficiently large that

the molecular velocity is axial. Quantitatively, the require-

ment is that the cosine of the half angle subtended at orifice

Sa by the detector be sufficiently close to unity. For most
gauges it is thus required that _ _ 20 cm fur the cosine to

differ from unity by less than 1/2%. The method of dealing with
smaller L will be discussed below.

Comparing Equations (2.051and {2.061and noting that the solid -

subtended by Ab is Ab/_ 2, it is found that the molecu-_gle

lar beam density on the axis of the beam is _,_

nb= _ _2 vb

L
i
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As is shown in Appendix I, the mean molecular speed in the
furnace is related to that in the beam by

= 8 ;b" (2.0.8)

Substitution of Equation _.0.8) into Equation(2.0.71 gives, for

a circular aperture of radius ra,

n b = _ n. (2.0.9_

Q

Although the gas molecules have a mean velocity vb with
respect to a stationary observer (i.e., the gauge to be calibrated),

this velocity is negligible compared to the velocity of the

ionizing electrons which generate the gauge ion current. Thus,

the gas molecules appear stationary in comparison to Jynamic

operation of the gauge. In addition, for ordinary molecular

beam velocities, the average kinetic energy that an ion has

immediately after ionization is not substantially different from

the average kinetic energy that an ion formed from an equilibrium
gas molecule would have. Therefore, the ion collection efficiency

_ of the gauge is the same for beam molecules as for equi]ibrium
gas molecules. The ionization gauge, which measures molecular

density, therefore cannot distinguish between a non-equilibrium

gas such as in a moderate temperature molecular beam and an

equilibrium gas. Thus, although Equation {2.0.9)was demived in
terms of density, the ideal gas law,

p = nkT, (2.0.10)

may be used to restate Equation (2.0.9)in terms of the equilibrium

pressure of a gas of density equal to the beam density. Thus,

' Pb 3, P" (2.0.111

Finally, combining Equations (2. O. 4) and {2.0.1]J yields an equation
that may be considered the calibration equation:

°,Pb = _ C + Ca Po" (2.0.12)

5
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2.1 Gauge Enclosure Method

An assumption implicit in this derivation has been that

the beam density is constant over the voiL_ne of the gauge ion

collectir,_g structure (e.g., within the grid cage of a Bayard-

Alpert gauge). Considering separately the density variations
perpendicular to and parallel to the beam axis, the forme_ is

seen from Equation {2.0.51 to be negligible as long as cos _ is
sufficiently close to unity, where 0 is the angle at the

f..

aperture subtended by the gauge, whil_ the latter may be in-
vestigated by applying Equation {2.0.9)to two different values

of f. Let _I and t2 represent, for example, the midpoint

and one extremity of the ionizing region of length L. The

ratio of densities at these points is given by (for large t )

2

n(t'2) tl L

n-T_ = (2.i.i)
Thus, there exists a minimum distance of approach of the gauge

to the molecular beam aperture if an unacceptable non-uniformity

in the gas density distribution within the gauge is to be

avoided. But to obtain a sufficiently large variation in beam

density by varying _, the calibration apparatus becomes long
and cumbersome, since the range of beam density variation is

proportional to t2

max {2.1.2)2 "
_mtn

For example, if less than 1/27o error is required in this term,

then for L = 4 cm, _i > 800 cm. The error at _ = 200 cm is 2%.

As an alternative method, an isothermal enclosure can be

placed around the gauge such that the molecular beam is trans-

formed to an equilibrium gas upon entering the enclosure, thus
eliminating the density variation associated with the non-

equilibrium beam. This has the further desirability that it may
be used in calibrating gauges that would otherwise, due to their
geometry, strongly scatter the molecular beam.

Figure I is a schematic of such a calibration system as
described above. In the next two sections, a mathematical

analysis of that calibration system and of the accumulated

probable error in the gauge enclosure pressure will be presented.

6
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2.2 Analysis of Gauge Enclosure Method

As is shown in Appendix I, following Kennard@ 9 for a gas

in equilibrium at temperature T the number of molecules per

second, drv, moving with speeds in the range dv crossing
frm one side through unit area of SI and passing into a
solid angle dw whose axis makes an angle , with the normal

to SI is

1/2 mv2

dr= n(2-_kTI v3e - _ cos, dvd.. (2.2._V

where

n = density in the molecular furnace,

m _ mass of gas atom,
k = Boltzmann constant.

If a small, ideal aperture, SI, is made in the wall of a
vessel containing an equilibrium gas and if the mean free path

of the gas is large compared with the aperture diameter, then

drv is the number of molecules per unit area and unit time with
speeds in the range dv passing through the aperture into dw. #

Consider this Maxwellian effusive stream after emanating

from S 1 to enter an ideal aperture S 2 in a wall distant A cm
along the normal to SI, as shown in Figure 2. Since the mean
free path of the gas is long, there are a negligible number of

molecular collisions in the space between SI and $2, so that

those molecules moving into dm from dS 1 pass through elementary
area dS 2 where

cos , dS2
d_ = - 12.2.21

7.2 '

Z2 = i2 + R 2 + r2 - 2Rr cos e (2.2.31
and

cos + - t_ (2 2.41
Z @ @ +++

Y

Thus, Equation (2.2.11 becomes _
?t

- _ vae- z4 dv. (2.2.5) .._+i.+

1966018675-015



Z 2 = jL2 + w2

w2 = r 2 + R2 - 2rR cos e !,

FIGURE 2

MOLECULAR BEAM AND ENCLOSURE APERTURES (SCHEMATIC)

9

I
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Integrating over the velocity spectrum gives the total

number of molecules per unit area and per second, dr, leaving

dS I and entering dS 2

® dr n_2 igkT 11/2 dS 2_r = _v dv= ,_- t_- j z-;- (2.2.6)o dv

Now, as shown in Appendix I, the mean molecular speed in the
furnace is

(8kTf 11/2
_f= _-r_-I ;

therefore,

nr_f _2 dS2

dr = _ (_Z + R2 + r 2 _ 2Rr cos e) 2 " (2.2.7)

The total molecular flux contribution into dS 2 from all the
aperture area SI is then,

f nvf IL2 o_f_.f_.a,, = dr a_1 = -- r at, ae ,, (a.2 8)
4_ (_2 + R 2 + r2 _ 2Rr cos e)2 " "

S I o o

Using Dwight 446.03 and 859.2, and integrating with respect to
gives

(2.2.9)

l -i • •"iAfter some manipulation and change of varia les to

u = R2 - _2 _ r 2 {2.2 101
<

Equation {2.2.9}may be written

£2 2 r 2)a (u- 2R2)du
dv n_f /Fu(R2-_ - {2.2.11_ !i.

dS---'_ _ u_(a2__2) (u2 * 4R2L2)3/z" ;,_
Using Dwight 200.03 and 201.03 to evaluate this integral, gives _

I0 '_

y-

i
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Now, integrating the molecular flux into dS2, over all of

aperture $2, gives the total numbe= of molecules entering S2
per unit time

NS _dS2 dS 1
2(In)

S2 (2.2.13)

- ra 2.RdR.

o

R2 _2 r2Changing variables to u = + + and using Dwight 380.011a
to evaluate the integral gives

112_

- ngf I 4r2 r2 ]
• gs = T "(r2 + r2 + _2) 1 - 1 - . a '. 12.2 14)

a S (r2 + r2 + _2)2 '
2(In) a g

In this application, the.enclosure.radius rg must be
maintained large enough that ionic pumplng does not introduce

large errors in enclosure pressure. For a Bayard-Alpert structure

this requires rg = 0.8 cm and for a Redhead structure, rg = 3.1 cm.
If, to minimize scattering, the closest approach of the enclosure
to the furnace aperture is fixed at 9 cm and the practical upper

limit for the furnace aperture is fixed at ra - .75 cm, then the
quantity in square brackets in Equation{2.2.1_ is approximately

equal to one, since

4r 2 r 2

a g < _ (2.2.15)
(r2a + r_ + _2)2-

Therefore, to better than 1/4% the square bracket in Equation

_.2.141may be expanded in a binomial series in which all but the
first two terms are neglected. Equation (2.2.1_ then becomes

1966018675-018



n_¢ _ r 2 r 2
= f a _ o (2.2.16)

Ns2(.f ) (r2 + r2 +g

The beam molecules, after being randomized in the gauge enclosure

at temper ture Tg, then re-emerge from the enclosure aperture as
a molecular beam. The number of molecules effusing per second is1

o + g_r2gNS2 = ng _ . (202.17)
(Our)

In addition, in the process of its operation, an ion gauge drives
gas into the gauge elements with an effective pumping speed,
S(cm3/sec), so that when the molecular density in the gauge en-
closure reaches equilibrium,

NS2 = NS + Sngo (2.2°18}
(zn) 2(Our)

Therefore, substituting Equations (2.2. 161, {2.2.17) into
Equation {2.2.18), it is found that

- n = a no 12.2.19} (

,r _g a g

But the constraint has already been imposed that

_ r 2 >> So (202,20)g

Therefore, Equation {2.2.191may be written

_f r 2a
= _-- , no (2 2 211

ng g ;2 + r2 + '¢2 ' "g g

Now, Appendix i shows

Tf / 112= , 12.2.22)

and since the molecular density in the furnace is related to
that in the isothermal gas source by (Equation (2.0.4))

C _
P

n = C + C no' (2.2.231

12 !.
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where,

Cp = porous plug conductance,

C = furnace attenuation aperture conductance, and

Ca = furna°ce beam aperture conductance,

then, the steady state molecular density in the gauge enclosure

is given by

= .....a (2.2 24_
r + r + £2 C + Ca n "

Followit,_ the reasoning in Section 2.0, Equation [2.2.241may

be expressed in terms of p,'essure using Equation (2.0.i01, so that

finally

.___.( 11/2 r 2 cp  2.2.25);,.. _
Pg _-gl r2 + r + A2 C + Ca Po'a g

2.3 Probable Error in Calculated Pressure

Equation(2.2.25) is the expression for the pressure in the

gauge enclosure. If Rpg is the probable error in the meanvalue of the pressure, then the relative probable error,

rpg = _g/pg, in the mean value of pg is

f

2

(2.3.zl

2 + 2 :

l_Ca R2 + R2 + R2 + RT+ Ca laPo/ Po i_rgl rg f RTg

13
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In Equation (2.3oliand what follows, the mean value is to be
inferred for each variable; however, the mean value notation

(e,g., x) will be deleted.

Calculating from Equation (2.2.25_ the partial derivatives

required in Equation (2.3.11,and dividing by pg yields

2 2
+ £

pg @ra ra (r2 + r2 + £2) pg @T 2Ta g g g

@r r2 + r2 + £2 pg aC C
Pg g a a P P

i _Pg= _ -2£ I_ ._ = _ 1

pg _o r2a + r2g + _2 pg _C C + Ca

__1 _ 1
pg _Tf 2Tf pg @C C + Ca a

Pg _Po Po

_2.3o2)

Substituting these into Equation (2.3.1)and remembering that

rx = Rx/X , it is found, assuming for the length measurements

rra = rrg = r£ and for the temperature measurements ZTf = rTg ,

that

14

f

,mm._n.._ •
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r2gt2 + r+R) -2 2 C2r2
8(t +

= r2 r2)2 r2 + ½ r2 + 2 + ..... )2 (u r c + )rp
g "(t2 + + r a Tf a Ca g rCp a

1/2
+ r 2 . {2.3.3}

Po

Now Ca = bTf I/2 r2a' where b i_ a constant, --

(2.3.4)
so, following the procedure of Equation (2.3.11gives

2 = 1/4 r 2 + £1r2rarca Tf ' (2.3, 5)

and since assuming that since the measurements are similar,

r c - r c. (2.3.6)
a

Now, since 02 + 02

..... a _ z, (_',3.7)
(C + Ca)2

it is seen hat Equation (2.3.3)becomes

rpg _ L ( r2a + r2g + _2)2 + It ra Tf rCp p
.3 B)

Now, as will be more fully described in Section 3, Cp is
obtained from the decay of pressure Po in the gas source
volume, V, from times 0 to T, that is,

Po(O)
C = V tn (2.3.9} "

p z po ('r) "

Therefore, following the procedure of Equation (2.3.I}and

assuming for both pressure measurements that (0) = (*) "
give s rpo rP° rP°

e

I[
.

15
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f_, Po (O)] -22 2 + r2 + 2 n _j r_o. (2.3.10)rCp = PV T

As will also be described in Section 3, the volume, V, of

the pressure source is determined by measuring the pressure

change Ap = Pl.- P2 when the volume of the system is changed by
AV = V 1 - V2 by means of a precision burette. A schematic of
the experimental setup is shown in Figure 3. The initial volume

of the system is

' - " kmx (23 11)
V1 = V + V Pl i • •

and the volume after increasing the diffusion pump oil level in

the precision burette is

, NkT2 (2.3.12)
V 2 V + V - AV - P2

where V' is the unused volume of the burette during measure-

ment of PI" Simultaneous solution of {2.3.II) and (2.3.12) yields

| "-

V = aV - V (2.3.13)

P2TI/

Thus, following the procedure of Equation (2.3.i),we have

(AV)2-2 2 2 (,AV)2-2 2-2 2,]

TIP2Pl R 2 + "1'IP2'1'2R 2 + II . (2.3.14)
+ (TIP2- PIT2 )_ T2 (TIP2 PIT2 )4 Pl

c
16
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Now, since they are similar measurements, we may take

RTI = RT2 and _I = _2 and then Equation (2.3.14} becomes

2 ...._ I[ T_p_Av )2

- r 2

LIT.,p2 p._T:,lAv- v

(PlP2TIT2 AV)2 [ ] '2 1

_ r 2 + r2 + V 2 (2 3 15)
+ 2 -(TIP 2 PIT2)4 T1 Pl rY_ " " "

Thus, finally, substituting Equations _.3.10) and _.3.15) into

Equation(2.3.8}gives the relative probable error rpg in themean value of the gauge enclosure pressure:

[8(I 4 + r212 + r_) r2 + 1 + 2 9.n
, I_ -g - +, +_r 2rpg_ (r2 + r 2 + L2)2 r a Tf Po(,) r °

u a g

2

(PlP2TIT2 aV) 2 / 1/2[ ] ,'• r2 + r2 + v 2J (2.%.161+ 2 (TII_2 ,_ Pi%2)4 TI Pl rv' " "
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A numerical estimate of the accumulated probable error was

made from Equation {2.3.16), b_sed on the assumption that the
probable errors in the individual measurements can be maintained

at the following levels: length <_0.5%, time <_0.1%, temperature
0.5%, and pressure _ 0.03%. Experience with the development

of this calibration system r indicates that such probable errors

can be maintained in practice. It was assumed t',at the dat_

formed an adequate statistical sample. The results, indicate

thatl an accumulated probable error of calibration of not greater
than 5% is attainable.

3. POROUS PLUG

As discussed in Section 2, a porous plug is introduced
between the gas pressure source and molecular furnace to provide

pressure attenuation. The flow properties of porous materials

have been extensively studied. 3, 4, 5, 14, 15, 19 In many

porous media, the character of the flow makes the transition

from viscous to molecular flow as gas proceeds through the

porous material. Such a transition naturally depends upon
the upstream and downstream pressure and the characteristic

dimensions of the pores. By choosing a material with an effective

pore diameter, dp, sufficiently small compared to the mean free
path, _ , of the gas at the upstream surface of the porous plug,

molecular flow conditions can be maintained throughout the

entire porous plug; thus, the throughput is a linear function

of the pressure differential across the porous material. This

latter condition of linearity is highly desirable in a gauge

calibration system.

3.1 Porous Vycor Glass

One of the stages in the development of Vycor is a porous

_ilicic network obtained by leaching of borosilicate glass. 6
After once cycling to high temperatures (up to about 700°C),

this porous structure is reported 7, 8 to be stable with respect

to repeated cycles to lower temperatures. Because of its tempera-

ture stability, porous Vycor is a very suitable material for a
pressure attenuator in a wide range calibration system since

high temperature degessing is essential to proper system per-
formance.
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Porous Vycor (Corning 7930) has been estimated 9'I0'II'12'15'21

to have an effective pore diameter of about 60 angstroms, as
determined from its adsorptive and desorptive properties. As

will be discussed more fully in Section 4, departures from

molecular flow conditions may become large when the mean free

path finally decreases such that A _ d.. Since the mean free

path of argon at 298°K is given by Dush_an 13 to be

= 5.31 x 10-3• -----, {3.1.11
P

where p = pressure in Tort; molecu].ar flow conditions in

porous Vycor are expected to hold for upstream pressures

approaching

p(_ _ d )_ 104 Tort. (3.1.21
P

In a channel of length large compared with its diameter, the
flow remains free molecular for much smaller ratios of Knudsen

number M = l/d than for the short tubes or apertures which

will be discussed in Section 4. Porous glass would be expected

to have more of the character of long capillaries than apertures
or short tubes.

In the case of many porous materials, surface flow has

been shown to be a large component of the total flow. 14 For
example, Carman and Malherbe 4 have shown it is the major con-
tribution to the flow in the case of Linde silica and Carbolac i.

Barrer and Barrie 15 show for porous Vycor glass, however, that
after the blind pores which contribute most to the internal

surface area are filled up and the steady state established,

surface flow contributes little to the total flow. They show
that although in the transient approach to steady flow the

adsorption of argon is very marked compared to that of helium,

in the steady state the ratio of flow rates for the two gases is

CAr = 3.29. _.I.3)

The prediction of molecular flow theory is

--= = 3.16 (3.1.41
CAr MHe

which differs from the value given in expression (3.1.3) _y 4%.
They also find that C is very closely proportlonal to T_ as

expected for molecular flow, for all gases investigated except
ethane.

2O
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Considering the above possibilities for deviation from

molecular flow in porous plugs, it is necessary to determine the

minimum value of M that may be used such that throughput

deviation from linearity with pressure remains less than some

prescribed value. The minimum usable value of M corresponds

to the maximum allowed value of Po in the gas source and thus
determines the upper limit of the gas source dynamic range.

3.2 Porous Plug Conductance Measurement Technique

Assume for the moment that molecular flow occurs through-

out the entire volume of a porous plug separating the chamber
of volume V at pressure p from one at pressure p' << p.

If Cp is the conductance of the plug, then after molecular
sinks not contributing to steady state flow have been filled,

and since sources such as wall desorption are not important at

the pressures involved, particle conservation requires:

Cppo B02oII

The solution to Equation 13.2_i)for p = Po at time zero is

Ct
__2._

p - po e V , (3o2o2}

so that on a plot of _n p vs. t the slope will be given by

O

Slope - - _E o (3°2.3)

At the other extreme, if the porous plug flow is completely

viscous, the conservation equation becomes

_ V d-P..= Dp 2dt ' (3o 2.4)

where D depends upon the temperature and gas. The solution

to Equation (3.2.4) is :

D
Po F- - V to (3.2.s)

If the flow changes from viscous to molecular as the pressure, p,
is decreased in the chamber, the data will lie on a curve which

shows a transition from Equation {3.2.41to Equation (3.2.i). If
an experiment is carried out to monitor the decay of pressure in

such a chamber as described above, the main characteristic of
the transition from viscous to molecular flow will be a decrease

P
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in the absolute value of the slope of Zn p vs. t until at low

enough pressures the slope becomes constant and equal to - Cp/V.

3.3 Determination of Porous Glass Flow Properties

Such an experiment was carried out for two separate porous

Vycor plugs. Figures 4 and 5 show the two plugs, the first of
which is in the form of a porous tip on the end of a test tube

structure. Several grades of glass were used in this plug,

the last being Corning 7052 for sealing to a Kovar tube welded

to the gold o-ring sealed flange used to join it to the gas

source. The second plug, Figure 5, was in the form of a I inch
diameter, right circular cylinder of rolled porous Vycor. The

cylinder which is about 0.135 inches thick was mounted in pure
indium contained in a Cajon connector VC-16. The connector

brazed to a gold o-ring sealed flange is shown in Figure 6
mounted on the wall of the molecular furnace.

During the manufacture of porous plugs and while they are
maintained under normal atmospheric conditions, various con-

taminants are adsorbed in ._e pores. The plugs take on a 16 17
yellowish or brownish color and upon heating become dark brown. '

In order to clean up this adsorbed material, Corning Glass Company,

the manufacturer, advised heating the plug to 500°C in oxygen
until the color clears up. The furnace shown in Figure 7, with

porous plug #I installed, was constructed so that oxygen passing

through a dry ice acetone immersion cold trap was continuously

forced through the porous plug, and at the same time, another

similarly treated oxygen line supplied oxygen at a lower pressure

to the exterior of the plug. The temperature was increased at

a rate not exceeding 100°C per hour to 425°C. The temperature

was measured by a thermocouple inside the porous end of the tube.

During the first 8 hours of heating in oxygen, the color of

the porous glass varied among yellow, brown, and red. The
heating and flushing was continued to a total of 24 hours after

which time the porous glass had a translucent appearance with

a slight blue color when illuminated with white light. The
disc-type porous plug, #2, was similarly heat treated, being

mounted in the furnace as shown in Figure 8. Both plugs were

maintained in the purified oxygen environment until they were

installed in the prototype calibration system and during this

installation they were bathed in a flow of dry argon, nitrogen,
or helium.

2
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The Kas used for the porous plug, conductance experiments
was "Baker analyzed" ultra-pure argon maintained at 304°K. In
addition, in order to understand the flow mechanlsm more completely,

an experiment was carried out with helium gas at 304°K and also

with argon gas at 308°K. Figuru 9 is a diagram of the flow

system used. The rotating piston gauge (CEC-type 6-201-0001

Primary Pressure Standard) shown with its associated components

in Figure I0 is joined by a differential pressure gauge (MKS

Baratron, Type 77H-I068) to the gas source chamber. The pressure,
p, below the porous plug was maintained low by a diffusion pump-
ing system, the pumping speed of which for 304°K argon was de-

termined to be 104 liters per second by reference to the ion
gauge shown. In the steady state, the pressure ratio across the

plug i_ given by

P _ S
, C " (3.3.i)

P P

For the plugs used, this ratio is > 5 x 106 . --

Careful attention was given to the construction of joints
in the system in order to prevent leaks that could contribute

as much as 0.1% of the porous plug conductance. Heliarc

welding of stainless steel, gold-nickel eutectic alloy brazing,

and gold compression seals were used wherever possible. Figure
Ii shows the gas source chamber and molecular furnace after

brazing and welding but before assembly using gold seals. Although
a helium mass spectrometer leak detector was used to assure the

vacuum integrity of most of the system, it was not possible to

do so for the porous plug structure and mounting. If a leak
had been in the porous plug structure, iu would have been

immediately evident in the data, since from Dushman 18 it may be

* A typical impurity analysis of the gas used was:

02 < 1.4 ppm

N2 < I ppm
Ne < I ppm

H20 < 0.4 ppm
C02 < I ppm

Hydrocarbon < I ppm

(
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FLOW SYSTEM FOR POROUS PLUG CONDUCTANCE MEASUREMENT (SCHEMATIC)
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calculated that the diameter of a capillary in a 0.i cm wall (

necessar_ to give 0.1% of the conductance of the plug used
(2 x 10-J lilers/sec) is, approximately,

d = 6 x 10 -4 cm. (3.3.2)

Since the mean free path in the gas source chamber is orders of

magnitude smaller than this, the flow would have a definitely

viscous behavior and the conductance would show large variations
with pressure.

After evacuation of the gas source chamber and gauges, the
entire system was pressurized with ultra-pure gas. The differential

pressure gauge was then calibrated for zero differential and

the crossover valve closed, isolating the gas source chamber

from the rotating piston gauge through the differential pressure

gauge diaphragm. This part of the procedure is necessary since

the leakage between the piston and cylinder (gas lubrication) was

of the same order of magnitude as the conductance of the porous
plug and would introduce a very large error in the measured value

of Cp if this leakage path were not blocked. As the gas
diffused through the porous plug, the chamber pressure decay was

monitored with the rotating piston gauge. There was not infinite (
resolution of pressure with the piston gauge since the measure-

ment involves adding incremental weights to the rotated piston

or cylinder. Therefore, the procedure in making the measurement

was to maintain the piston floating with the appropriate weights

for the next lowest pressure to be arrived at in the decay of
chamber" pressure. The pressure differential between the piston
gauge and the chamber was monitored and the time that the differ-

ential becomes zero was observed. The zero point had been

previously calibrated as mentioned above. Experience had shown
that the Baratron zero drift was less than 10-3 Torr over an

experiment lasting for several days. This procedure was then

carried out for incremental decreases in weight of the piston
or cylinder.

The measurements were carried out for a pressure range of

0°3 psi to 100.5 psi using porous plug #I in the equipment shown
in Figure 12_ Figures 13 and 19 show on logarithmic plots the

decay of pressure with time. The solid lines are least squares
fits to a straight line. The relative standard error estimates

for these least squares fits are less than 0.2%. The average
value of the slopes of the least squares fits was determined

from the results of seven separate pressure decay curves derived

32
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FIGURE 12
POROUS PLUG CONDUCTANCE HEASURENENT EXPERIHENTAL APPARATUS
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Least squares fit to straight line.
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from 189 data points covering widely different regions within
the range given above.

The gas source chamber and porous plug were maintained at

304°K + 0.5°K in six of the experiments and at 308°K + 0.5°K in

one. The last pressure decay (see Figure 19) was pe_formeo

after admitting atmospheric air at near 100,% relative humidity

for a 14 hour period. The least square slope of the experimental

decay curves are given in Table I. The average value of the

least squares slopes of all decay curves is 7.55 x 10-6 per
second with a relative standard error of the mean of 0.5%. The

distribution of values is random showing no significant trend
with pressure or temperature within the limits investigated. The

last pressure decay measurement performed after the deliberate

contamination of the plug showed nearly the largest deviation
from the mean.

Since the transition to viscous flow will be most evident

at the highest pressure, least squares analysis was carried out

for the fit to a straight line of sections of the pressure decay
data of the highest pressure experiment, namely 100.5 psi (see

Figure 16). The slope of the least squares fit for groups of I0

points was determined and the results are shown in Table 2. It

is seen that the I0 point slopes depart from the least squares

slope of the complete set of data by less than 1/3%, and the

deviation at the highest pressure is negative, not positive as
one would expect if viscous flow phenomena were becoming evident.

It is thus found that linear flow conditions prevail for

pressures such that M is smaller than 1.7. Wilson, et a119

have reported for stainless steel plugs that deviations from
linear flow were evident for M = 1.6.

In order to determine the conductance of the plug from

the slope of the pressure decay curve, it is seen from Equation

{3.2._)that the volume, V, of the pressure source must be known.
An experiment to determine V was carried out for each porous

plug since the two different plug mountings did not displ_ce

the same volume. The experiment consisted of measuring the

pressure change in the pressure source as the volume of a pre-

cision burette joined to the pressure source was varied by AV.

An analysis of the experiment was presented in Section 2.3 as

a part of error analysis. Figure 20 shows the experimental

arrangement with the burette shown extending downward. The
volume of gas in the burette was changed by varying the level
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TABLE 1

LEAST SQUARES SLOPE SUMMARY FOR POROUS PLUGS

Porous Plug #I

Pressure Least Squares Deviation* Temperature

Experiment Range,.psi I _Slope, hr[ I, From Mean and Gas

I-i 1.5- 15 0.02696 -0.85% 304°K, Ar

1-2 2.3 - 24 0.02705 -0.51% 304°K, Ar
1-3 !.305 - 35 0.02709 -0.37% 304°K, Ar

1-4 0.3 - 0.51 0.02737 +0.66% 304°K, Ar

1-5 32 - 100.5 0.02717 -0.07% 304°K, Ar

1-6 25.8 - 30.5 0.02730 +0.40% 308°K, Ar

1-7 3.5 - 25.8 0.07889 304°K, He

1-8"* 9 - 17 0.02739 +0.74% 304°K, Ar

Mean 0.02717

Porous Plug #2

2-1 7.5 - 14.65 0.01901 +1.01% 304°K, Ar

2-2 4.15 - 6.8 0.01863 -1.01% 304°K, Ar

Mean 0.01882

* Run 1-7 was not considered in determining the mean; only argon
runs were considered.

** Run 1-8 was carried out after 14 hours of flow of moist

atmospheric air through the porous plug.

C
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TABLE 2

LEAST SQUARES ANALYSIS FOR POkOUS PLUG EXPERIMENT 1-5

Slope of Deviation from Slope*

Pressure Range Least Squares Fit For Fit to All Points

I00.5 - 84 psi 2.706 x 10-2 hr -I -0.33%

(5200-4400 Torr)

-2 -i
82.5 - 67 psi 2.715 x I0 hr 0

(4260-3490 Torr)

66 - 51 psi 2.723 x 10-2 hr "I + .29%

(3410-2635 Torr)

49.5 - 33.5 psi 2.715 x 10-2 hr -I 0

(2560-1730 Torr)

* Slope of least squares fit for complete 100.5 - 32 psi
run is 2.715 x 10-2 per hr.
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of a low vapor pressure silicone oil (Dow-Corning 705) using an
external source of pressure. The pressure in the gas source

volume was determined using the rotating piston gauge. As with

the pressure decay measurements, to prevent the leakage in the

piston gauge from affecting the measurement, the differential

pressure gauge was placed between the piston gauge and gas source
and the readings taken for zero pressure differential. The

experiment is begun with the gas source, molecular furnace and

piston gauge joined to a common manifold pressurized with ultra-

high purity argon to the level required to float the piston.
All metal valves are then closed to isolate the three elements.

By taking care in closing the valves, the small variation in

pressure in the system, due to the tra_ping of gas as the valve
seat closes, can be kept less than 10-0 Torr, which is negligible
in comparison to the change in pressure induced by changing the

volume by AV. The weight of the piston is increased to correspond

to a 0.5 psi (_26 Torr) pressure increase and the level of oil

in the burette increased until the differential pressure gauge
again indicates zero and the oil level noted so that AV can be

determined. In creating this pressure differential across the

porous plug there is a flow through the plug decreasing the

pressure in the gas source volume. The error introduced by this
flow into the determination of V was estimated using an ex-

pression similar to Equation 9.2.2)and found to be negligible

for porous plugs whose conductance is less than 10-5 liters per
second.

The volumes of the gas source with each of the plugs in

place were determined to be:

V1 = 1.383 liters, and
V2 = 1.309 liters.

The relative probable error calculated from t,le error analysis

given in Section 2.3 is 1.8%. The reason for this relatively

large error is the multiplication of errors in pressure and

temperature by the ratio V/AV where V is the gas source

volume and AV is the incremental change in _olume. In the

measurements made, V/AV was greater than 50.

Measurements on the leak-down of the _isc-type porous plug
#2 were carried out over the pressure range 4 to 15 psi° From

the slope of the pressure decay curve derived from 89 data points

and the measured volume, V2, the conductance of the porous plug
was determined to be 6.84 x 10-6 _/s. From the measured dimension
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of the plug, a specific flow rate of 6.0 x 10-6 liter mm/sec cm 2
is calculated. This is greater than the value published 20

(oxygen data corrected to argon) for porous Vycor glass by a
factor of 2.7, and larger than that obtained by Barrer and Barrie

by a factor of 1.4. The reason for this discrepancy is not known

although possibly 30% of the difference could be accounted for

by uncertainty of tne area and thickness of the plug due to the

type of mounting used and the fact that the rolled glass surface

used is not flat. There may also be variations in the manufactur-

ing procedure for different lots of glass. Several different
characteristics were shown by Emett and Dewitt 21 for different

samples of porous Vycor.

The experiments on the flow of argon in porous Vycor have
shown its conductance to be constant with pressure over a very

wide range of pressure and indications are that the conductance

is not greatly affected by exposure to normal atmospheric con-
ditions. It is concluded that the conductance of a porous plug

of Vycor is not predictable a priori. However, by putting a
differential pressure gauge between the pressure source and

rotating pistc_ gauge, the conductance of the porous plug in

use in a calibration system may be meas,_red at any time in an
experiment as described above to any dej1"ed accuracy. Since

the linear character of the decay has been proven, the measure-
ment could consist of a few determinations of pressure and time

over a period of a day. Such measurements could be periodically
made to check system performance. In addition to the determina-

tion of conductance, this experiment would give a positive check

on the pressure integrity of the gas source since as discussed

above, non-linearity in the plot of _n p vs. t would be very
evident if the pressure decay is due to flow through any other

element except the porous plug.

4. INVESTIGATION OF MOLECULAR BEAM SOURCES

4.1 Deviations From Free Molecular Flow of an Orifice

In the derivation of the calibration equation (Equation{2.1_),
there are several implicit assumptions which must be more careful-

ly considered concerning the nature of gas flow in and from the

molecular furnace. The constraints placed upon the operation of

the system due to the result of these considerations may be
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described, as for the porous plug, in terms of the ratio of the
mean free path of the gas to some characteristic dimension. All
of these constraints relate to the maximum allowable deviation

from: i) molecular flow conditions, and 2) thermodynamic equi-
librium.

The most important constraint and the one given the most

consideration both in the literature and in this investigation

is that concerning the deviation from molecular flow through

the orifice which defines the molecular beam. Postulating

molecular flow conditions, the number of molecules passing out
of the unit area of the orifice in unit time is

1
F nf.

This is a result derived from kinetic theory by M. Knudsen I for

the number of molecules within an equilibrium gas that pass
toward one side through unit area in unit time. The situation

in the case of an aperture in the wall of a vessel containing an
equilibrium gas, outside of which a relative vacuum is maintained,

differs from the above in that a completely negligible number

of molecules pass through the aperture with inward directed

velocities. Therefore, the molecular density in tne vicinity

of the aperture is reduced, being ½n in the plane of the orifice

and increasing to n, the equilibrium gas density, as one proceeds

back into the gas. If the molecular mean free path is very large
compared to the aperture diameter, the presence of the aperture

has little effect on the molecular distribution function, and

expression _.I.iI yields the correct flow. Theoretical calcula-

tions of the correction to expression_4.1.11have been made by

Liepmann,22, 23 Narishima,24 Willis,25, 26 and Probstein. 27
Their calculations are in general agreement with the fact that
the deviation from the molecular flow limit (expression _.i. III

due to a finite ratio M (KDudsen number) of molecular mean free

path, X, to aperture diameter, d, for large M is

Actual Mass Flow Rate
, = i +  .io2)Free Molecular Mass Flow Rate

Willis gives an expansion in terms to order (I/M) 2 which

is valid for smaller M than is Equation _.1.2), but agreement
with exact numerical computation is for M E 3. Willis' exact

result (using the first iterate distribution function) for the
mass flow rate at the center of an orifice normalized to the

Knudsen flow rate is shown in Figure 28.
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As Willis points out, since his is a first iterate treat-

ment and a second order expansion of this shows large deviations

for M < 1.5, therefore, it is expected that the second iterate

problem should be considered for such small M values.

Experimental verification of the deviation from Equation(4.1.11
has been obtained by Liepmann. Scott, et ai,28 show that the

deviation arises from a loss of molecules of low velocity from

the Maxwell-Boltzmann distribution leading to a higher mean
molecular speed and a more narrow distribution of speeds in the

beam for low M values than in the collisionless limit (M = -).

The scatter in their data is large. The free molecular limit

conductance, C, is shown by Bureau, et al, 31 for an aperture of

area, A, situated coaxially in a tube of length, L, diameter,

Do, and area, Ao, to be

d= A

1 - (1 - o) To

In addition, a Clausing correction, K, should be included to
account for finite thickness, _ , of the material in which the
aperture is formed. This problem was first treated by Knudsen 32
and more complet.ely by Clausing, 33 Smoluchowski, 34 and DeMarcus. 35
Miller36 gives a Fortran program for Clausing's expression for
the fraction of molecules entering a cylindrical orifice which

diffuse out the other end into any given cone with half angles,
0, from 0° to 90° . He provides a table of values for various
_/r ratios. The value of this fraction for 6 = 90° is known as

the Clausing factor. Clausing calculated the distribution from

an orifice with _/d = I. This is plotted in Figure 21 along with
a cosine distribution function for comparison. Kennard 37 has

shown that for short tubes, such as the orifices considered here,

the Ciausing factor, K, is a

where d is the diameter of the orifice. Thus, finally, from
Equations_.l.3)and_.l.4),the orifice conductance, C, is given
by
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FLUX DISTRIBUTION OF MOLECULAR BEAM WITH ORIFICE THICKNESS

TO DIAMETER RATIO _/d = 0 AND I (AFTER CLAUSING 33c)
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4.2 Experimental Measurement of Conductance

In order to more precisely evaluete these deviations from

Equationt4.1.11, experiments were conceived in which the con-
ductance of an aperture would be determined over a range of

pressure corresponding to Knudsen numbers, M, from abo,lt 3.5
to 12. Consider a pressure source, molecular furnace, and

pumping system as shown in Figure 22. Ci is the orifice whose
conductance is to be determined. Anticipating that two experi-

ments will be required to determine the conductance, the sub-
script i will take on the value i or 2, and other parameters

_;ill be treated similarly. A pressure Poi of argon measured
by a rotating piston gauge is maintained in the gas source.
The gas flows threugh a porous plug into a molecular furnace

whose walls are maintained isothermal with the pressure source

and plug. The gas then effuses from the orifice in question

into a pumped cavity, the pressure of which is maintained at

least two orders of magnitude smaller than the equilibrium

furnace pressure, Pi, by maintaining an equally large ratio of
pumping speed, S, to orifice conductance. The piston gauge

which has a finite leak, as previously discussed, is maintained

in a floating condition by a variable volume, piston-cylinder
arrangement with which the total volume of the gas source and

gauge chamber may be varied.

The pressure drop across the orifice is determined using

a capacitance-type differential pressure gauge. The system

reaches equilibrium shortly after the pressure Po is es-
tablished, the delay being all associated with the attainment

of steady state flow in the porous plug, as previously discussed.

Under conditions of molecular flow through Cp and Ci
it is seen that

Cp(Poi- pi) = Ct (pi - Pp)° {4.2°11
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Also,

Ct(pi - pp) = Spp, 14.2.2)

so that,

C t
_--- iIL

Pp C. + S Pt =-QiPt ' (4 2.3)

and therefore

C

P_ = di(1- P i"_'i) + Cp Po 14.2.-41

No:-:,C_ is much smaller than Ci for any reasonable
diameter ofPorifice, and we have, finally,

C
= P

Pl Ct(z- ,,t) Poi" (4,2.5)

The mounting and flange for the porous plug (see Figure 5)

has a conductance CM which is of the same order as the orifice

conductance Ci. However, the geometry of this mounting and
flange are such that Pi is determined by the series combination

of CM and C It follows directly from the flux continuity
equation that _he total conductance is 29

CpC Mc' -
p C + CM 'P

and since CM > Ci then, as before. CD may be neglected com-

pared with CM and no correction to Equation _.2.5} is found
nece3sary.

Consider an experiment in which the molecular furnace is

operated over a range of pressure Pl such that the ratio, MI,
of the mean free path,

: i Pl

to orifice diameter, dl, is sufficiently large compared with

unity, that there are negligible deviations from molecular flow, as
given by Equation (4.1.1). y here varies directly with tempera-

ture, and its value for various gases may be found in Dushman. 30
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Since Co can be accurately measured, as shown in Section 3,
Equation i4.2._Imay be used to calibrate a gauge which is arranged

to measure Pl. Since it is desirable that the gauge have linear
response characteristics over the lange of pressure to be in-

vestigated, a capacitance-type differential pressure gauge, MKS

Instruments, Inc., BARATRON, was chosen. The gauge is non-
specific with respect to the gas to be measured. The particular

model used (77H-I068) had high sensitivity and fast response over

the range 2 x 10-5 Torr to 3 Torr, although the noise level was

high at the low end of the range. A 1/4% chart recorder

(Honeywell Eiectronik 17) was used as the indicator. 1_e least
count of the system is 2 x 10-5 Torr and short time zero drift

variations of this order were found during zero check made

before and after each of the data points measured. This also

constitutes a hysteresis check since the zero check was made
immediately following the removal of the measured differential

pressure. A differential of 3 to 5x 10-5 Torr, the origin of
which is unknown, was measured across-the orifice with the

furnace evacuated. The range over which the differential

pressure gauge was calibrated was 1.4 x i0-3 Torr to 5.0 x 10-3

Torr. Data was obtained over the range up to 1.5 x I0-I Torr
as will be described more fully bel_.

Now consider a second experiment performed with the same

apparatus but with a different orifice such that the ratio

M2 = _2/d2 is smaller than M I. Equation_.l._ predicts for

small M 2 values some variation from the specific flow rate, C2 ,_
obtained in the free molecular flow limit. In order to assess

the magnitude of any such deviation, measurements of furnace

pressure, P2, must be made over the range for which the differ_
ential pressure gauge was calibrated in experiment i, and since

Cp and Po are accurately known, then C2 may be evaluated and
compared with the predictions of Equation _.I.2).

If _ is the multiplicative factor denoting the deviation

from free molecular flow, then

c2= . 2o  So2.

Now if measurement of Pi was made using a gauge which

had, a scale error nj for the j scale, then thederived value
Pi is

t

Pi = n] pto _o2.9}
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Using the j scale, Equations {4.2.51 and (4.2._ yield

, CpPo I

Pl = "j " ' (402.10_ ---
oi(1- az)

so that the gauge constant is
!

61(l - _I) dpI

n__ : " C'p _ [4o2..11_

as long as the measurement is carried out for pressures low

enough that C I is not a function of pressure. From Equation
{4.1.2}this is seen to require that M be large.

For the second orifice experiment, the steady state solution,

Equation 14.2.5_ and Equations {4.2.8) and (4.2.i_ may be combined

to yield
a. t

, CI(I - -,) dp I _.2.1P_)

P2 = .{_2(i +2"_ d-_o 1 Po 2" .:.

where P2 is the pressure across the orifice as measured using
the j scale. Thus, by rearranging terms, the deviation from -

molecular flow may be determined from •
!

61(1- _I) dPl Po2
_ -r-, (4.2.13!62(1 _2)-I P2

+

Using Equation (4.1.5), the orifice conductances for argon

at 304OK are calculated to be for the two experiments performed

C 1 = 7.63 x i0-2 liters per second, (4.2.14}
and

C 2 = 8.62 x i0-I liters per second. 14.2.15)

The system pumping speed, S, was determined during the porous
plug experiments by measuring the pressure in the chamber below
the plug with an NRC type 507 ionization gauge. The speed de-

termined for 304°K argon is 104 liters per second. Correction
was made for the series conductance of the spool I,ieee inter-

posed between the pump and the molecular furnace for the orifice+
• experiments. The effective pumping speed in those experiments _-

is then ...
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S = 86 llters/second. (q.2.16)

Using Equations (4.2.3)and _. 2.141 - (4.2.16), the coefficients ai
are calculated to be

a I = 8.9 x 1o-4 (4.2.17)
and

a2 :" 1,01 I 10 -2. {4.2.18)

Thus, Equation (4.2.13_ becomes

' Po2
dPl 14.2.191

P2
! •

u = 0.0893 dPol

Figure 23 is a picture oflth_ experimental equipment shown
schematically in Figure 22. Figure 24 shows one of the 0.0005"

thick copper aperture plates mounted on a flange which joins it

to the molecular furnace and Figure 25 is a IOOX magnified

picture of aperture #2 which was formed by drilling with fast

spiral twist drills through the copper sandwiched between 1/8"

thick ground and polished aluminum plates.

The deviation from free molecular flow, _ , was evaluated

according to Equation {4.2.!9) over the range 3.3 < M < i2.5.
The deviation from Knudsen flow was found to be less than 3%

over this range. The uncertainty in this determination was
slightly less than 2%. Since the deviation, _ , determined

above was small, it was considered desirable to investigate

the region of ..,laller M where the deviation is expected to be

substantially larger. A repeat of the calibration procedure
described above for a wider range of M is impractical With

any reasonable set of system parameters, as can be shown from
the results of Appendix 2. Therefore, the extension of the

measurement of u to smaller M values must depend on the

assumed linearity of the differential pressure gauge. A measure-

ment is also required of the multiplicative factor, _Jk, re-
lating readings on scale k to those on scale j so that

! !

Pzj = P2k" (4.2.20)
e

J
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Determination of ratio _Jk was made by measuring P2 for the
same Po Nut on 2 different scales, j and k. The relative

standard error of the mean for a large number of such ratios _Jk
was found to be less than 1.3%. As for i_nearity, the-manufactur-

er's specifications indicate that it should be better than 1/2%,

and since the lower scales were used for which the diaphragm

deflection is sm=ll, the assumption of iinearity should be even

better. As may be seen from Figures, 26 and 27, which show least

squares fits of straight lines for the data of p' vs Po for M
from 12 to 40, the linearity assumption appears good; the relative

standard error estimate for these least square fits is approxi-

mately 0.5%. A total of 266 data points were daken over the
range 10-3 Torr to I0-I Torr.

!

If measurements of Pl in Equation {4.2,19) were made
using scale j, then for the extension of measurements of M 2

below M2= 3.3, the factor* _ is obtained by substitution of
Equation _.2.20} into Equation (4..2.1_ . The resulting ex-c.

pression for _, the multiplicative factor denoting the devia-

tion from free molecular flow through the orifice, is given by

t po 2
-_- ---- (4.2.21)

= 0.0893 dp° ,
I P2k

Figure 28 is a plot of _. given by Equation (4.2.21),

versus M, where Y (Equation (4.2.7)) for argon at 304°K is found
from Dushman 30 to be 5.42 x 10-3 cm/Torr. Also on Figure 28 is

plotted u as given by Willis' complete first iterate treatment
of the orifice flow from upstream on the axis of the orifice in

which second order corrections were applied to correct for flow

from downstream. /'Le latter correction procedure is probably

in error for M less than about 3. Finally, on Figure 28 is

plotted the curve representing Equation _.i.2_ the first order
expression for u given by Liepmann.

It is a temptation to conclude that Willis' correction to
free molecular flow accounts well for the measured deviation.

However, a measurement of the diameter of the orifices after

the completion of the entire experimental program showed a 2.5%

and 8% increase in the diameter of orifice 1 and orifice 2,

respectively, which leads to undertainty in calculating the

theoretical conductance. It was expected that orifice 2 would

show yield, since while carrying out leak testing procedures in
D
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the extreme high vacuum system, a large pressure differential

was applied across the orifice.

However, in the previoas orifice experiments, a conductance

was put in parallel with the orifice to minimize such pressure

differentials during pumpdown. Since orifice i was found to

have been yielded much less than orifice 2, it is probable that

most of the yielding of orifice 2 occurred after the orifice

flow experiments were complete, that is, during the XHV experi-

ments. If, for example, the frdctional yield of o':ifice 2

during pumpdown for the orifice flow experiment w_ about the
same as for orifice i, then to first order there would be no

correction to the treatment given above or to the experimental

curve in Figure 28. Thus, depending on the fractional yield

occurring during pumpdown for the orifice experiments, the

experimental curve in Figure 28 could be in error up to about
11% which is much greater than the deviation that must be m._

explained. It is for this reason, and because as M gets large,
the measured deviation from Knudsen flow goes to zero, that

it is assumed the yield of orifices i and 2 was nearly the same

during the orifice experiments and u plotted in Figure 28

requires no correction. The problem of the yielding of the
orifice must have a more satisfactory solution for the calibra-

tion system. Possible solutions are that the pressure differ-

entials applied must be kept small enough, or perhaps a stronger

material tban copper may be used for the orifice and still

maintain a sufficiently low temperature gradient in the orifice

material. However, even the copper orifice used in the experi-

ments described above showed a large temperature gradient.

4.3 Scattering Effects in Molecular Beam Sources

It is concluded from the results shown in Figure 28 that

the deviation from Knudsen flow for small M may be estimated
with some precision from Willis' first iterate solution. This

gives one confidence in the range of pressure over which

molecular flow theory may be applied. In the calibration system,
measurement of the pressure in the molecular furnace is not
carried out so that correction to the molecular flow throughput

need not be made. The throughput of the orifice must be identi-
cal with the throughput of the porous plug which is always

maintained in the molecular flow regime as shown in Section 3.
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Thus, the correction to the downstream intensity of the (
beam becomes a question not of the throughput but rather of the

angular distribution of the beam as it effuses from the orifice,
and of the scattering that occurs downstream of the orifice. This

is a distinct problem not connected with the total flow rate of
the orifice as considered above, but rather with a secondary

effect on the intensity of the molecular beam downstream of the
orifice. With respect to total flow rate. the back scattered

flow from downstream of the orifice which must occur due to gas-

gas collisions in the vicinity of the orifice, has been con-

sidered by Willis and found for M = 3 to be nearly 10% in magni- •
tude of the increased flow from upstream. The gas-gas collisions
outsid_ the orifice are expected to be increasingly more im-

portant as M is decreased. Knauer and Stern 38 were the first
to show that as M is decreased, the intensity downstream is
decreased. The reason for this decrease was claimed to be the

formation outside the orifice of a "cloud," the area of which

is the emitting surface for the molecular beam rather than that

of the orifice. At any given value of M, the effect is dependent

on the particular type of orifice used. For example, Knauer
and Stern 39 dismissed Mayer's 40 criticism of their "cloud" theory

on the basis that a stronger cloud formation should occur for

their slit type of orifice than for Mayer's circular orifice,

since the intensity, a distance r from an emitting slit. •

should vary as l/r, however for" a circular orifice as I/r 2.

Knauer and Stern, using a slit, showed for H20 that the cloud
effects appear at M = 3 and less. Kratzenstein, 41 using a

circular orifice, showed for potasium thac ciGud formation was

just detectable at M = 1.6.

Other experimental problems affecting the detection of
cloud formation arise from scattering phenomena. Johnson 42

suggested that Knauer and Stern saw the cloud at large M
values because of scattering from background gas near the

orifice. He suggested the remedy of cryopumping in this area

as is used in tbe present calibratien system. In addition,

the effect of small angle scattering is more noticable as one

moves farther away from the orifice where all the scattering
takes place. As the detector with its finite opening is brought

close to the furnace orifice, molecules scattered through only
small angles are still collected, lhus, since in the calibra-
tion system high pressures and, thus, small M will be used

when the distance _ is small, therefore, the effect of the

scattering or "cloud" formation will be least. It is expected

that the effect of this scattering on the beam intensity would
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not become evident before that of deviation _, due to collisions

inside the orifice. Therefore_ Willis' theory may be used to

estimate the M below which unacceptable deviations in the beam

flux occur. From Figure 28 it may be seen that the deviation
becomes 1% for M = 13.

4.4 Nonequilibrium Effects in Molecular Beam Sources

The last constraint on the molecular furnace and beam

orifice system arises from the requirement that the gas be it_

thermal equilibrium with the isothermal furnace walls and that

density gradients in the furnace be negligibly small. There are
several distinct elements to this constraint.

The first element in maintaining density gradients small

is that the conductance of the furnace be very great compared
with that of the orifice. This is not difficult to attain for

any reasonable aperture size.

Second, there is the requirement that the orifice area be

small compared with the internal surface area of the furnace

so that wall collisions will be orders of magnitude more frequent

than will be passages through the orifice. This is analogous

to the problem that arises when an exit hole is made in a black

body cavity. Also, if a temperature gradient exists in the
orifice material due to radiation to the 4°K cryopump, then it

is required that the wall surface be large compared with the
area of orifice material having an excessive temperature

difference from the furnace temperature.

The third element is concerned with the finite mass flow

rate of gas through the furnace and orifice which ma_ lead to
nonequilibrium of the gas with the furnace. _arnes 4 and also
Cooke 4_ using different methods have treated some prob]ems

arising from such mass flow. It may be seen that this non-

equilibrium effect decreases and finally becomes negligible _s

the mean free path approaches and exceeds the furnace dimensions.
In that limit, gas-wall collisions are more frequent than are

gas-gas collisions and there is no opportunity for the molecules
to deviate from a Maxwellian distribution characteristic of the

temperature of the wall.
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5. CALIBRATION EXPERIMENT OF PROTOTYPE SYSTEM

The prototype calibration system was installed in the extreme

high vacuum system in order to make use of the low temperature

helium gas cryopumping system_or attaining conditions of low

background density. Johnson, _ in 1927, suggested _at the devi-
ation from molecular flow found by Knauer and Stern JU in their

molecular be&m experiment was due to background gas collisions

and could be eliminated by cryopumping between the furnace and

detector. The cylindrical cryopumped cavity used in the present

experiment is 45 cm. in diameter by 60 cm. long. It may be seen
in Figure 29a. Previous experiments 45 carried out in this system
have shown that if the wall were maintained at about 8°K the

capture coefficient for argon would be greater than 0.999. This

is supported by the work of Dawson, et ai,46 who show the capture

coefficient for argon to increase to unity as the temperature is

decreased below about 12°K. A different view is expressed by

Foner, et al, 47 who give the capture coefficient for argon on a

4°K surface to be 0.6, but their experimental conditions are less
well defined than those in the other experiments. Figure I is a
schematic of the installation.

f

The molecular furnace and gas source was joined to the cryo-

pump wall by means of a stainless steel bellows, as may be seen
in Figure 29b. A conical radiation shield which operates at the

temperature of the rest of the cryopumped cavity shields the 300°K

beam orifice from the cryopump. The beam orifice may be seen

beyond the radiation shield in Figure 29a. The axis of the molecu-

lar furnace, and thus, the axis of the molecular beam, was aligned
toward the gauge in the cavity by adjusting three stainless steel

turnbuckles. The gauge was enclosed in a copper cylinder which

is shown mc'Inted in the cryopumped cavity in Figure 29a. The

theory of the calibration system using the gauge enclosure is

given in Section 2.2. The gas source, molecular furnace, and
gauge enclosure were maintained isothermal by a common heat trans-
fer line which circulated fluid around them. Water was used as

the heat transfer fluid and the temperature of the 30 liter bath

was maintained at 304°K + 0.03°K. The auxiliary equipment for

maintaining constant temperature, supplying and measuring argon
gas pressure, and measuring ion current of all ion gauges is
shown in Figure 30.

The gauge in the enclosure was a hot filament suppressor

grid gauge. The orifice on the enclosure was a 1.6 cm. diameter (
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FIGURE 29
(A) GAUGE AND ENCLOSURE IN CRYOPUMPED CHAMBER

(B) MOLECULAR FURNACE AND GAS SOURCE CHAMBER
' MOUNTED ON CRYOPUMPING ClimBER WALL

FIGURE 29
CALIBRATION RUN OF PROTOTYPE SYSTEM
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hole in i0-j- cm. thick certifiedOFHC copper foil, The conductance

of this orifice' was sufficiently.ilarge that ionic pumping of argon

, by the g_uge led .to less than 0_5% variation of the enclosure

press_r_e from that predicted by EquaL-ion t2 2.25_. Bakeout of the
enclosure was accomplished by electron bombardment from the gauge

filament during, which time thee.water cocling was diverted such
that it fiow$d to the molecular furnace and g_s source only. Bake-

_ out of the gauge and :enclosure was carried out at 350°C for several
hours until acti_va_ion of the electron bombardment at 10-9 Tort

caused no increase in the coiiec_ed_ionization cL.rrent. -_

L;]cra_pure argon, :as used in the experiments described in_

Sectl0ns .3 and 4, was admitted _to [he c:_libration'-system. _'_With

: the porous plug _Cp = 6.84 x 10-6 iiters/sec:.) and the orifice
(0.358 cm. diameter) used, the c-_.libra_ed range attained, as de-

termined "from Equation (2o2o25S, was i _ 10-8 Tcrr, to 2.2 x 10-7

To:rr. Lower" gauge pressures could be attained:_ in the _enclosure;
however, due Lo el:ectrieal leakage in the collector electrode

$" . g

circuit of unknown origin wlthin the extr_eme high vacuum-system,

, :_ data for p_re._sur_s below 8 _ 10-9 _:orr'were_not measured. Table 3_
gives tbe_data £or pressures fr0m_.38 x I0_8 Torr, to 2.2_11_,xi_0-7 =

_: o:°Torr. The_.i_otentials_ applied=to r:he gauge e_lectrodes with respect-__
E te gro6nd (Coilec_or-pote6_.ia!) we_,re',grid:, 150 Volts, cathode,

o 45 volt s;-_screen grid and suppreNsor grid, 0 -volt s;_,modulator

connec_'edt0 grid. 'Ibe collector current -versus enclosure presSUre
: is p_otted in Figure 31. Nonli_nea-rity due._.t.othe electrical

leakage is _oticeable below lO-9.Torr• The-gauge sensitivity _' --

derived from Figure 31._is 00038 amperes per .7orr_

T.he_background gas density_ was monitored by a Redhead

magnetron ga,age (NRC 552A) which was mounted in the .wall of-the

cryopumped cavity on w_ich the molecular furnace was mounted.. _

The: axis of the gauge tubulation was parallel_ to the-axis Of :the
molecular beam. The background density thus d_te,nnined was _

compared to the density in the gauge enclosure and the resulting
signal-to-background gas density ratio is shown in Figure 32

where _.._:_ssures_Pc,, are varied from L _o _0 psi. It is noted
_" that the sig:_l-to-noise ratio varies from 496 to 63. It is also-

noted that the sign,_l-Lo-noise ratio m_,._sured for' Po = 5rP si Was
much small(_r 'in_ the 'latter part of the experi-menL, _The. noticeable

large decr'_]_asein a_gr,a]-to-backgr'e_.'nd gas density 'ratio is

probably due to a change in the temper'_ture of the cryopumped

cavity. Suffici_.nt argon had been deposited on the cavity , prior

to cul.lecting the data shown, to assure that .the surface was
covered wiLh solid .argo_. A calculation using the reported 48 .,_
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FIGURE 31

CALIBRATION DATA FOR SUPPRESSOR GRID GAUGE
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heat conductivity of solid argon shows that the heat of conden- r
s_tion or radiated heat available is insufficient to significantly |
increase the surface temperature° Due, however, to a failure in

the helium heat transfer system tbere was a temporary increase
in the temperature of the circulating gaseous helium. Tne

measured increase was from approximately ll°K to approximately '

12OK. The data of Dawson, et al, 46 indicate that a decrease in

capture coefficient of argon from unity occurs in this range of

temperatures. In addition, desorption of cryosorbed hydrogen i
could add a significant gas load. In o_d_r to investigate the ..

possible effects of this on the data, the average of the tempera-

tures of the helium gas out of the cryostat and the return gas

is also plotted in Figure 32 on the same time scale as for the

signal-to-background pres3ure ratio. It is seen that there is a "

rough correlation between the decrease in signai-to.-background
ratio and increase in average gas temperature.

m

,_ 6o DISCUSSION, RLSULTS, AND CONCLUSIONS _

During the construction and testing of th_ calibration ---

--_ system prototype apparatus, individual components of the system

havebeen examined in detail. Those areas in which the problems
considered have been resolved will be discussed below and the

appZication of these results to calibration system design
principles will be presented° Discussion Of those areas in

which future work is considered necessary will be deferred r
until Section 7o _

m
O

6.1 Porous Plug [
It was shown in Section 3 that a porous Vycor glass plug

may be effectively used as a pressure attenuation element

between the gas source chamber and molecular furnace for pres-

sures at least as high as 5200 Torr for argon at 304°K_ The

lowest'pressure in the gas source chamber that may be used i_

that: for which the National Bureau of Standards will presently ,_ -
certify a measuring device, namely 15.5 Torr; therefore,_the

dynamic range of the calibration system that may be obtained
by variation of 'the gas source chamber pressure is at least '_--

350. The addition of a differential pressure gauge between the
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rotating piston gauge and gas source chamber of ehe calibration

system allows that system to be used to determine the porous
plug conductance. Thus, the conductance of this very critical
element of the calibration system could be measured at any time,

providing a continuing on-site calibration of the system.

The apprehension that contamination due _o exposure of

the plug to atmospheric air may have a large effect on subse-

quent flow measurements has been found to be groundless. A

deliberate attempt to contaminate a porous Vycor plug for more

than 1/2 day by flowing humid atmospheric air through it was "_
followed by a measurement that showed the conductance for argon
to be within 1.5 times the standard deviation obtained by con-

sidering all conductance measurements.

A _orous Vycor plug with a conductance smaller than
7 x i0-° liters/sec was made and by combining the techniques

used for fabricating the plugs _n this investigation, a porous
Vycor plug of less than 2 x I0 -° liters/sec probably could be

made. Using well controlled heat treatment techniques it may

then be possible to shrink the pore structure and reduce the
conductance to a still lower value. This may be desirable

for attaining the lowest level of pressure (10 -15 rorr) since
it would mean that both the beam attenuation orifice and

auxiliary cryGpump could be eliminated and all the pressure

attenuation could be accomplished with the porous plug and

beam aperture conductances.

The two porous plugs used were subjected to a maximum

stress level on the order of 1500 psi. Porous Vycor is many
times stronger than this 7 even for long time loading, so that

the gas source pressure attained is not limited on that basis_

in the case of plug no. 2 which was sealed in a compression

mounting with indium, a stress level of about 500 psi was

reached in the indium which is approximately the tensile strength
for pure indium. 50 A step increase was found in the measured
conductance. Tightening the plug in the mounting caused the

conductance to decrease to its former value. Since a higher

strength material is desirable and since the low melting point

of indium restricts the temperature attainable in degassing

required for proper system preparation, future compression

mountings should use a metal such as gold that does not have
these undesirable characteristics.
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6.2 Beam Orifice

It was found that various metal foils of sufficient quality
for use as orifice materials are available in the thickness

range down to 2.5 x 10-4 cm. This allows the fabrication of

orifices with negligible (i 1/2%) Clausing corrections (see

Equation {4.1.4))for diameters as small as 0.05 cm. An orifice
as small as 0.i0 cm diameter was fabricated in 10-3 cm thick

OFHC copper foil. The circularity of the orifice was better
than 1/2%. Two problem areas were found which require con-

sideration in future work. The first was that during the

pumpdown of the system a large enough pressure differential

was attained across the orifice material to cause it to yield.

Figure 33 shows the yielding of the 10-3 cm thick OFHC copper
of orifice #2. The diameter of the orifice was found to be

increased by 8 percent. The solution to this problem would be

to provide a sufficiently large parallel conductance between
the molecular furnace and cryopump cavity during pumpdown.

The second problem was the relatively high thermal resistance

of the thin orifice material leading to a noticeable radial

temperature gradient due to heat radiation from the 300°K

foil to the ll°K cryopump wall. This gradient is illustrated

in Figure 33 where the condensation of diffusion pump oil

resulting from a failure in the liquid nitrogen trapping
system, may be seen. The pattern of condensation clearly

indicates the temperature gradient that must have existed.

The result of this was that the assumption of isothermal

molecular furnace walls was violated. The most satisfactory
solution is to increase the ratio of the area of isothermal

walls and baffles to the area of orifice material. Another

approach is to consider a knife edged type of orifice but

the effect of such non-ideal aperture geometry would have to

be carefully investigated in order to define the error intro-
duced.

The results of the experiment to determine the departure

from free molecular flow as the mean free path of the gas in

the molecular furnace was made comparable with the diameter of

the orifice, were presented in Section 4. It is seen from the
results plotted in Figure 28 that the ratio of the measured
flow to that calculated for free molecular flow is approxi-

mately that predicted by theory and the departure is _ess than

one percent for Knudsen numbers greater than about M = 12.
It is seen from Equation (2.2.25) that considering only the
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FIGURE 33
ORIFICE #2 MOUNTED ON GOLD O-RING SEAL FLANGE
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density of the molecular beam or gas enclosure density, not the
total throughput, then for the case where the molecular furnace

attenuation aperture conductance, C, is zero, the effect of

transition flow through the beam orifice conductance, Ca, is
at most of second order due to the appearance of C =nd_ iu the
numerator and the denomenator. If C # 0 deviations from

molecular flow lead to deviations in pg which are not compensated
as above when C = 0. Thus, it is desirable to operate the

calibration system with C = 0. As will be shown below, in order

to attain the lower limit of pressure desired (i.e., 10-15 Tcrr)

the constraint that C = 0 requires that Cp be decreased by at
least two orders of magnitude which may ehvolve substantial

fabrication problems for porous plugs of Vycor glass. However,

the minimum C reauired depends on the lower limit of gas sourcep
pressure, Po, for which the National Bureau of Standards will
certify a pr(ssure gauge. At present the Pressure and Vacuum
Measurements Sections of the Naticnal Bureau of Standards are

not prepared to calibrate a commercially available absolute
instrument below 15.5 Torr, but they expect, in the near future,

to be able to certify certain gauges to 0.i Torr with an

accuracy of 1/2 percent.

The above conclusions were based on the assumption that

deviations in beam intensity resulting from scattering down-
stream of the orifice are a weaker function of M than is the

deviation in throughput. These deviations in beam intensity
result from the formation of a "cloud" downstream of the

orifice as discussed in Section 4. Experiments to determine

the effect of the "cloud" on beam density were not made.

6.3 Molecular Furnace Equilibrium

In developing the theory of the calibration system and in
carrying out the experiments on it, it was implicitly assumed

that the gas in the molecular furnace was in thermal equilibri-

um with the (isothermal) walls. There are severa] distinct

elements to this assumption: the conductance of the molecular

furnace must be large compared with the conductance of the
apertures; the area of the aoerture and non-isothermal orifice

material must be small compared with the furnace wall area;

the center of mass velocity of the gas through the furnace

must be sufficiently small compared to the mean thermal velocity

that the gas may be considered in equilibrium with the furnace
walls.
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The problems associated with the first two elem_Lts above

were solved by their proper consideration during the design of

the molecular furnace. The problem of non-isothermal orifice
material as discussed above in reference to Figure 33 must be

more carefully considered in future work. The non-equilibrium
condition due to finite mass flow rate of the gas is negligi-

ble if the gas mean free path greatly exceeds the molecular

furnace dimensions, since the temperature of the molecules
then becomes that of the wall. As the mean free path becomes

smaller, the influence of gas-gas collisions becomes more

important than gas wall collisions. In the absence of a quanti-

tative measure of the extent to which the gas becomes non-

equilibrium due to gas-gas collisions, an estimate of the effect
ma> be made based on the ratio, R, of the collision probability

in the gas phase to the collision probability with the furnace

surface. This ratio is given by kinetic theory for a gas of

mean free path _ in a spherical cavity of radius rf as

2y_R = -- . (6.3.1)
3_

Thus, the probability for collision with another gas molecule

is less than that for collision with the cavity wall if

is about equal to the furnace dimension and becomes negligible

with increasing _. For a cylindrical cavity, R is still

smaller. Thus, it is expected that for a gas whose mean free
path is at least as large as the furnace dimension, the de-

parture of the distribution from that of a gas in thermal equi-
libriumwith the wall is small. Due to the relative insensiti-

vity of the average velocity to small changes in the distribution,

it is concluded that errors introduced into Equation (4.1.I)

by molecule-molecule collisions will be negligible as long as

A df or in terms of the Knudsen number Mf = _/df _ I.

6.4 Time to Establish Calibration System Equilibrium

In the practical application of the calibration system, it
is necessary that the time to set up equilibrium in the system

be reasonably short. The approach to equilibrium of a volume

V filled or evacuated through a conductance C is exponential

in time as was shown in Section 3. Equation (3.2.3) shows the

time constant to be V/C. In the calibration system, the times
to establish equilibrium in the following volumes are of inter-
est:
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Io Source chamber

2. Gauge enclosure
3o Molecular furnace

In changing the pressure in the gas source chamber, benefit
is obtained from the fact that viscous flow conditions lead to a

high effective conductance C. Thus, by providing a sufficiently
large bore tube connecting the gas source chamber to its gas

supply, the time lag in arriving at equilibrium in the gas source
chamber can be made negligible.

Equation (2.2.20) shows that the diameter of the gauge

enclosure must be maintained large for gauge pumping effects
to be negligible. Even for gauges with pumping speeds as small

as 0.I liters/sec, the enclosure conductance must be at least
20 liters/sec so that the time constant of a i liter enclosure

would be approximately 0.05 seconds.

The desired value of the conductance, Ca, of the molecular
furnace will vary with the pressure range covered. As can be

calculated from Equation (2.2.25), the smallest conductance,

Ca, required in a calibration system to reach 10"15 Torr for

an attenuation aperture diameter.of 0.5 cm and Cp = 1.6 x 10-7
llters/sec is about 3.8 x 10 -3 llters/sec. Thus, the time
constant for a i liter molecular furnace is about 4.5 minutes.

By decreasing Cp and Po suggested in Section 6.2, Ca may
be increased with a consequent decrease in the time delay in
establishing equilibrium.

In addition to these time delays associated with the

volumes discussed above, there can be a substantial delay

associated with the attainment of equilibrium in the porous

plug. It may be shown 15 that the time lag, TL, in establish-
ing equilibrium for flow proceeding by a diffusion mechanism

is directly proportional to the square of the length, L, of
the element through which diffusion occurs and inversely

proportional to the diffusion constant, D, that is,

L2
TLQ _--, (6,4,1)

Barrer 15 has shown for 300°K argon diffusion through porous

Vycor glass that T L = 44 minutes for L = 2.69 cm. Therefore,
for a porous Vycor plug as thick as the one used in this

:)
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d

investigation, namely 0.3 cm for porous plug #2, Equation (6.4.1)°

shows that

• 30 seconds. (6o4,2)TO.3cm

This is a reasonably short time lag and for porous plug #I used

in this investigation the expected time lag would be

• 5 seconds. (6.4.3)TO, llcm

[
It should be noted that the T L Barrer measured probably in-
cludes tile effect of filling up the blind pores in the plug.

During a change of pressure, Po, from one level to another, the
effect of filling these blind pores will be very much less than
in the first introduction of gas into evacuated pores and thus

the time lags calculated above are upper limits to TL.

During the experiments carried out and d_scribed in
Sections 3, 4, and 5, the approximate time, T , to attain 70%

of the equilibrium system pressure was determined. Some of
these times are given below.

!

Gas source chamber: T • 2 seconds.
!

Porous plug #I: T • 5°5 seconds.

Porous plug #2: T' • 14 seconds.

Porous plug #2, molecular furnace, and 0.i cm diameter
orifice: Tv • 45 seconds.

Porous plug #2, molecular furnace, and 0.33 cm diameter
orifice: T < 12 seconds.

Response of gauge in enclosure using porous plug #2 and
0°33 cm diameter orifice: T' • 60 seconds.

6.5 Gas Properties

The performance of the calibration system depends on

various properties of the gas to be used. Some of these proper-
ties will be considered here with respect to the behavior of

the gas in the various parts of the calibration system.
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6.5_i Pressure-Volume-Temperature Relation for Gas

The virial equation of state may be written

PV = RT(1 + Bpp + Cpp 2 + .... ) (6.5.1)

where Bp, C_ etc. are the second, third, etc. virial coef-ficients, may be seen by comparison of Equation (6.5.1)

with Equation (2.0.10), a perfect gas has been assumed in

deriving the calibration equation, that is:

B - C - . . . m 0.
P P

For argon at room temperature the error introduced by this

assumption is less than 1/2 percent for Po = 5200 Tort. However,

if the temperature is de_[eased to 200°K, the second virial
coefficient for argon is--

B - - 0.002941. (6.5.2)
P

and at Po " 5200 Torr, the error in Equation (2.0.10) is 2%.
Virial coefficients for the various gases are tabulated in

reference 51 and may be used to correct Equation (2.0.10).

Referring to these tabulated values it is seen that the correct-

ion is only important for the gas source pressure, Po, and may
be neglected for the gauge enclosure pressure, p_, since the

correction is negligible for pressures as low as_lO -5 Torr.

6.5.2 Adsorption and Desorption of Gas

Under some conditions of temperature and pressure, the

amount of gas adsorbed on the walls of a chamber may be a

substantial amount of the gas present. The calibration system

can be adversely affected by such a situation since small
temperature fluctuations could, as a result, provide a signifi-

cant, uncontrolled, variable source or sink for gas. To in-

vestigate this situation the ratio, R, of the quantity of gas

adsorbed on a surface of area, A cm 2, with relative coverage,
e, to that present zn the volume V cm3 at pressure P is con-

sidered. Since a monolayer of an elemental gas contains 52
approximately 8 x 1014 molecules per cm2, the above ratio is
therefore

%
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R = 8.4 x 10-5 ACT
PV (6.5.3)

F,r a spherical volume of radius i0 cm maintained at

300°K, this ratio is less than 1/2% for pressures greater than

1.5 Torr, even for a complete monolayer. Thus, for the case

of the gas source which is at a pressure at least an order

of magnitode greater than this, the effects of such sources

or sinks may be neglected. Taking into account the relative

coverage e as will be described below, it can be calculated
that the quantity of gas adsorbed at the high pressures (5200

Torr) is small compared to that in the gas phase at low pres-

sures (15 Torr) so that desorption-time effects in the gas

source may be neglected. Of course, the gas source pressure,

Po, is always measured so that any desorption would be of

little consequence in any case.

In the case of the porous plug and molecular furnace, the

pressure decreases to less than 1.5 Torr, and these situations

must be considered more carefully. The relative coverage of

the wall 0, defined as the ratio of number of molecules ad-

sorbed per cm 2 to the number in a complete monolayer, is not

necessarily unity as assumed above. Hobson 53 has shown that
is well represented for a gas at temperature T and pressure

p by the Dubinin-Radushkevich equation,

_n e = - BR2T 2 _n , (6.5.4)

where B is a constant for the gas considered and Po is the
vapor pressure that would exist above the liquified gas at

temperature T, given by the Clausius-Clapeyron equation,

E d

p = d e - , (6.5.5)
O

where d and Ed are constants for the gas.

Using the value of the constants found by Hobson, the

solution of the relative coverage was calculated for the
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highest pressure expected in the molecular f irnace, namely,

p = 3 x 10 -3 Torr, and log 0 vs T is plotted in Figure 34.
From Equation (6.5.3) it is seen that for R to be less than

1/2 percent, the following inequality must therefore hold for
the I0 cm sphere:

O_.TT< ±98. (6.5,6)
p -

Substituting for _ obtained from Equation (6.5.4), this
becomes

T e- BR2T2 n ! 198. (6.5.7)
P Po

The solution to this transcendental inequality may be
obtained by graphical methods° From Figure 34 and using in-

equality (6.5.6) it is found that for p = 3 x 10-3 Torr, the

inequality requires

T _ 103°K. (6.5.8)

Investigation of inequality (6.5.7) for lower pressures
shows the minimum allowed surface temperature T is yet

smaller. The fact that low temperatures are allowed for the

gauge enclosure is significant in attaining the lower limit of

pressure in the calibration system. The outgassing rate due

to the combination of permeation, diffusion and desorption of
gas is an exponential function of temperature. For well out-

gassed stainless steel, the outgassing rate, Q', at 300°K is
of the order of 10-13 Torr liters/sec cm 2. Thus, for a stain-

less steel gauge enclosure of area A = I000 cm 2 which has a

200 iiter/sec conductance, C, to the cryopumped cavity, the

equilibrium pressure attained due to the outgassing of the
enclosure is

p = _ = 5 x
10-13 Torr_ (6.5.9)

-15
To reach i0 Torr calibration pressure, the background pres-

sure must be at least 200 times lower, so a pressure of
5 x 10"18 Tort must be reached in the gauge enclosure. It is

thus required that either a material with a lower outgassing
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rate be used or that the outgassing rate of the stsinless

steel be lowered by decreasing the temperature. Reducing the
temperature to 150°K reduces the total outgassing rate by

three to four orders of magnitude.

If the pressure in the gauge enclosure were Iuwered and

there were any time lag in arrival at equilibrium, the amount

of gas adsorbed at the initial pressure may be significant

compared with the equilibrium amount at the final pressure.
In order to minimize this problem during operation ._ the

calibration system, the pressure should initially be low,

and the calibration conducted in the direction of increasing

pressure° This may not always be the situation so that the

time to reach equilibrium must be estimated. Due to the

similarity of this problem to other adsorption processes, it
is expected that if the desorption is retarded below the

value:expected on the basis of kinetic theory, it is probably

due to an activation energy that must be provided. The rate

of desorptioh of adsorbed gas from a s_-face at temperature
T into a volume maintained at a pressure far below that corre-

sponding to an equilibrium coverage No is given by first
order theory ,s54

dN = _ e" Ed/kT _d-F - • , (6.5.z0)

where N is the number of molecules adsorbed, Ed is the ._
activation energy for desorption, and T is the effective

period of oscillation of the adsorbed molecule in the poten-
tial field of the surface.

Solution of Equation (6.5.10) for N yields

m

N _ N e • • RT , (6.5.11)o

where NO is the number of molecules adsorbed at time t = 0.
Equation (6.5.11) cbviously represents a decay of the number

of molecules adsorbed with a time co_tstant glven by

Ed/RT I
_I " ,e . (6.5.12)

%
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Now, the results of Section 6.4 show that after decreasing the
pressure in the furnace at 304°K, equilibrium is set up in

less than I minute. Thus, _I in Equation (6.5.12) will be
taken to be 1/2 minute. Now consider the approach to equili-

brium for temperature T2. In a similar manner to Equation
(6.5.12) the time constant in the pressure decay is given by

Ed/RT 2
= Te . (6.5.13)_2

m

Therefore, from Equations (6.5.12) and (6.5.13) it is seen
that

_2 = _le . (6.5.14)

Now, for argon, the heat of desorption is53 1558 calories/

mole so that for T 2 = 100°K, Equation (6.5.14) yields a time
constant,

_2 = 95.3 minutes. (6.5.15)

This provides an upper limit to the time la_ that could

occur in the attainment of equilibrium when the pressure is

suddenly decreased in the molecular furnace or gauge enclosure

at 100°K. It is unlikely that such a delay would occur due to

the relatively low activation energy for desorption.

Incestigation of Equations (6.5.3) and (6.5.4) shows that

the ratio, R, of gas adsorbed on the surface to that in the

volume is negligible for most of the range of pressure over

which the porous plug is operated. The result, observed in

this and in other investigations and discussed in Section 3,

that kinetic theory does not account for the observed porous
plug conductance with respect to molecular mass is therefore

surprising (see Equation _.I.3) ). If the ratio, R, for
_ argon were significant, an increased conductance for argon

over helium could be accounted for since the ratio of the

relative coverages, 0 , for argon and helium at, say, 15 Torr
and 304°K from Equation (6.5.4) is _I0 _J. The value of the

argon to helium conductance ratio measured in this investiga-

tion is 0.344 which is 8% larger than that predicted by
kinetic theory (see Equation _.i._). The opposite trend
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noted by Barrer and Barrie (see EquaL±on {3.1_3))can not be
accounted ,for on the.basis of surface f%ow but such observa-

tions could be-accounted for by atomic size effects.

6.5.3 Background Gas Pressure

As was shown in Section 61_.2 , the background gas density
must be kept as low as 5 x i0- v Torr. This pressure level

requires the use of cryosorption or cryopumping. The data on
vapor pressure of gases shows that for helium the wall tempera-

ture must be _ 0.215°K, for hydrogen 0.48°K and for neon not
less than 3°K. Since these temperatures are economically im-

practical in large systems, these gases must be excluded from

the system. For all other gases 10°K is sufficiently low for
the vapor pressure to be less than 5 x 10-18 Torr. Another

requirement for low background pressure is that the capture
coefficient, a , for the gas be sufficiently close to unity.

In the case of several gases, a has been shown 46 to increase

to unity for T < 10°K. As discussed in Section 5, the measured

signal-to-background ratio was at least 40 at about 12°K im-

plying a large value of a . The measurement of a should be

performed for a 4.2°K surface where a would be expected to
rise above the desired value of 0.995. Previous experience 45

has shown that 8°K is a sufficiently low temperature to attain

at least this large a capture coefficient.

A calculation was made of the time required for the gas

effusing from the furnace to form a uniform condensate of signi-

ficant thickness (2.5 x 10-3 cm). For the condition of the

largest throughput expected in pract=ce, this time is I000
hours so that the buildup is insignificant during a calibration

experiment. Furthelnuore, a calculation of the temperature

gradient across the condensate due to the heat radiated from
contemplated gauges or the gauge enclosure is found to be com-

pletely negligible. On the other hand, due to the low heat of

vaporization of liquid helium, the boil-off rate of liquid

helium resulting from the radiative heat load would be at least
several liters per hour.

The technique of beam chopping and synchronous detection

may be used to solve the problem of background gas inter-

ference. This scheme may be unfeasible at the lowest pressure

due to the relatively long time constant of measuring devices

for extremely small currents.
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6.6 Application of Results to Design Principles

Deslgn of a calibration system to cover the desired pres-

sdre range was carried out based on the results of the present

investigation. The maximum pressure, Pgmax' attained in a
gauge enclosure at 304°K was calculated _or argon. It was
assumed that the diameter of the molecular furnace is main-

tained at least 25 times the beam aperture diameter so that
the conddctance of the furnace is less than 1/2 percent of

Ca and, in addition, the mean free path of the gas in the
furnace was not allowed to be smaller than the diameter of

the furnace so that non-equilibrium effects are negligible.

These two assumptions result in the condition that M a _ 25
which was seen in Section 4 to be sufficient to assure that

the deviation from free molecular flow is less than 1/2 per-

cent. As da was decreased, the above assumptions led to
an impractically small furnace as can be seen from the results
prese_[ed below°

It was assumed that: Poma x = 5200 Torr; r~ = 3_I cm, so
that a Redhead magnetron gauge may be caliDrate_; and

_min = 9 cm was taken as a practical minimum, deferring a
calculation of the error introduced for small _ until later.

The results of the calculation of pg are shown in FigureX . .
35° Also shown are the results of calculations in whlch the

constraint that the mean free path, _ , of the gas remain

larger than the furnace diameter, df, was relaxed. The con-

ditions assumed were ; g df/2 corresponding to Ma__, 12.5 and
which w_uld lead to at least i percent deviation from free

molecular flow and also _ _ df/5 which would lead to more than
2.5% deviatlOno Table 4 gives the maximum allowable molecular [_

furnace pressure, p, and porous plug conductance, Cp, for a
given da and for Ma = 25, 12o5, and 5.

It may be seen from Figure 35 that if da = 0.5 cm, then a

maximum pressure of 3.1 x 10-.7 Torr can be reached in the gauge

enciesure_ The porous plug conductance is 1.6 x 10 -7 liter_/sec

and the pressure in the molecular6furnace reaches 4°4 x I0-_
Torr. ro reach a pressure of i0- Torr with the same aperture

results in non-equilibrium conditions in he furnace and trap-

sitien flow through the orifice with M a = 6 and _/df = 1/6.
This would require the introduction of a porous plug of

8 7C_ = x I0- liters/sec and the furnace pressure would reach
2_2 x 10-3 Torr.

(
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,_ Now, with the former Cp and by placing the gauge at
= 200 cm and removing the enclosure, the beam pressure for

POmi n = 15.5 Torr is

Pgmtn = 4.24 x 10 "13 Tore. (6.5.16)

There are several ways that the gauge enclosure pressure
may be lowered to 10-15 Torr, including any one or a combina-

tion of the following:

i. provide another porous plug of lower Cp,
2. use a lower gas source pressure, Po • ,

3. open another aperture of diameter, _nfacing an

auxiliary cryopump and simultaneously decrease da.

As will be shown in Section 6.7, the use of low CD may lead
to large errors in calibration. In addition, the fabrlcation

of plugs with sufficiently small Cp may lead to significant
practical problems. Alternative 2, above, is most attractive

and is a distinct possibility in th& near future when the

National Bureau of Standards completes its plans to certify
Bourdon gauges wlth better than 1/2 percent accuracy to I0-I

Torr. With respect to alternative 3, the smaller aperture

would be quite fragile and would lead to time delays as shown
in Section 6.4. In addition, the required auxilisry cryopump

would complicate system construction.

To investigate the assumption _min = 9 cm in the above
calculations, consider the error introduced due to increased

furnace pressure resulting from gas emitted from the gauge
enclosure. The expression for the fractional increase of

molecular furnace pressure can be obtained by continuing the

reasoning of Section 4, and is given by

2

[ ]+ + ,2)2 1/2= i- i- .a g
p 4r2 r2 r2 + r2 + ¢2)2 " (6.5.17)

a g a g
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Figure 36 shows _p/p of Equation (6.5.17) plotted versus _ for

ra = 0.5 cm and r_ = 3 cm. The calculation leading to Equation
(6.5,17) neglects_the re-emission of molecules which impinge on
the warm orifice material and thus the results estimated for

this situation are also plotted on Figure 36. In estimating

this contribution, an expression similar to Equation (6.5.17)
was used and the enclosure was taken to be a cylinder of radius

3rg and length 6rg. It may be seen that with either assumed
situation the error resulting from the re-emission is much less

than 1/2 percent for the minimum value of _ of 9 cm assumed
earlier°

6.7 Probable Error in Gauge Pressure

The complete error analysis was carried out in Section 2.3

for the case of a gauge in an enclosure. Evaluation of the

relative probable error in gauge enclosure pressure, rp_, was
made on the basis that the relative probable error in l_ngths

is 0.5%, in pressure measu ement is 0.03%, in time is 0.1%, and

in temperature is 0.5%, except for in the measurement of gas
source volume where it is 0.1%. It is found that the accumu-

lated probable error given by Equation (2.3.16) for a porous

plug of 10-6 liters/see conductance is less than 2%. For. Cp
larger than 10-5 liters/see, the relative probable error in-

creases due to the flow through the plug during the volume

measurement as discussed in Section 3.3, and for smaller C

and a gas source volume of 1 liter, the relative probable _rror
increases due to the small pressure decay that occurs during

any reasonable period of time. The error is estimated at 5.7%

for a porous plug of Cp = 10-7 liters/see for a gas source
volume of 1 liter. The error tends to go appro:_imately as

V/TCp where T is the length of time over which the measure-
ment of C_u is made. It is thus seen that the use of porous

plugs of C_ _ 10-7 requires the use of a smaller gas source
volume if the porous plug calibration is to be completed in a
reasonable time with the desired accuracy.

In the case of the nude gauge, there is an additional

source of error associated with the non-uniform gas density

over the length L of the ionizing region due to the i/_ 2

variation of beam density. This was discussed in Section 2.1
where it was indicated the error could be as large as 2 per-

cent for a distance of _ = 200 cm and a gauge with L = 4 cm.

That estimate derived in Section 2.1 represents an upper limit
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to t_e error' in p_, referred to the midpoint _ of the gaugem
due to the integrating effect of the gauge with respect to

pairs of points equidistant from _ along a ray from the molecu-m
far beam aperture° The additional error due to the i/z 2 varia-

tion is thus expected to be much less than 2% for _ = 200 cm.

7. RECOMLMENDAIION FOR FUTURE WORK

From the results obtained in the work that has been com-

pleted and from the more complete understanding of the potential
of this calibration method resulting from exp=_ience with the

system, there has developed a clear need for additional re-
search work° The recommendations for future research work

are discussed separately below°

First, in the interest of achieving maximum operational

efficiency and a wide calibration range_ it is necessary to
let the beam-forming furnace aperture approach as near as

practicable to the upper bound ef the free molecular flow

regimeo This upper boundary may be defined as that pressure

at which the conductance of the aperture deviates by a pres-

cribed amount from the free molecular flow conductance° Experi-

ments were performed to _etermine the conductance properties

of an aperture in the range of smal] Knudsen numbers° In these

experiments it was found necessary to extrapolate the calibra-
tion of the gauge used to measure the pressure differential

across the aperture beyond, the range over' which it was cali-
bratedo Also, during these experiments some accidental yield-

ing of the aperture occurred° However, from the results of

this experimental work and some recent theoretical work, it

ncw appears that fair agreement between experimental results
and theoretical mrediction of ¢cnductance deviation from molecu-

lar flew conductance for small Knudsen numbers may be possible.
Therefore, an experiment should be performed in which the
aperture conductance is measured as a function of Knudsen

number over the range I to 25 and the deviation of the actual
conductance from free molecular flow conductance determined

as a function of Knudsen number° In order to maintain the

aperture differential pressure gauge_within its calibrated

range, it is probable that three apertures will be required°
Conductance around the aperture should be provided to prevent
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yielding during pumpdown. The conductance deviation as a
function of Knudsen n_mber should be calculated from theory.

The experimental deviation data should be correlated with
deviation theory and the upper pressure limit for which the

measured deviation departs from the theoretically predicted

deviation by less than a prescribed amount established. If

theory is not sufficiently precise at small Knudsen numbers,

the experimental data alone may be used to establish the con-
ductance deviation down to the minimum Knudsen number for

which there is high confidence in the accuracy of the data.

It is estimated that this will lower the limiting Knudsen

number by about a factor ef 8.

The second problem recommended for future research,

which is closely related to the first, concerns the angular

distribution of atoms effusing from an apertur_ operating
at small Knudsen numbers. The deviation of the aperture con-

ductance from its molecular flow value, to be determined in

the above experiment, is actually a measurement of the devia-

tion in the total flux effusing from the aperture as compared
to free molecular flow. In atomic beam applications, it is

necessary to know also the angular distribution of the ef-

fusing flux. Free molecular effusion through an aperture has
a cosine angular distribution; however, it is expected theo-

retically that the distribution shifts toward the forward

direction as small Knudsen numbers are approached. This has

the effect of increasing the flux density near the beam axis

at small Knudsen numbers. If full advantage is to be taken
of driving the beam aperture into the range of low Knudsen

numbers, an experiment must be performed to determine the

deviation between the actual angular distribution of the flux

effusing out of the beam aperture, and the free moleculaz

flow distribution (cosine) as a function of Knudsen number

(for small Knudsen numbers). If the angular distribution
is a strong function of Knudsen number in a range which is

acceptable with respect: to all other considerations, this

would impose a new constraint on the system in that a limit
would be set on the minimum distance between the beam aper-

ture and gauge enclosure aperture; however, if the deviation

in angular distribution becomes substantial only at Knudsen

numbers that are below limits imposed by other considerations,
no new constraint is introduced.

The third problem that requires further investigation

involves the signal-to-noise ratio (beam pressure to background
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pressdre ratio). It has already been determined experimentally

that large signal-to-noise ratios are attainable° However.
there exists some possibility that substantial density varia-

tions could occur in the background gas density in the cavity

and thus introduce a spurious dependence of gauge enclosure

density on the distance between the beam aperture and gauge

enclosure aperture. It is therefore necessary to conduct

further experiments in which a detailed density survey of the

cryopumped cavity is made at various beam densities or to con-
duct a chopped-beam experiment at various beam densities in

which the signal-to-noise ratio would be measured directly°

The fourth problem that requires further research is

somewhat related to the above experiment in the sense that

it is concerned with the ultimate background densitY attainable
both in the cryopumped cavity and in the gauge enclosure.

Cryopumping experiments have been conducted, under somewhat

different conditions, in which the background density attained

was be_w the limit of detectability of any gauge available
(_ i0-_J Torr) o Total surface gas desorption measurements

have been made after applying ultra high vacuum processing

techniques, from the results of which it is calculated that

0 tbe background pressure inside the gauge enclosure due to
ou_gassing and desorption of the enclosure should be no great-

er than _ 10-13 Tort. Using extremely rigorous processing

techniques it is confidently expected that substantially lower

background pressures are attainable inside the gauge enclosure.

However, it is essential in establishing the accuracy and
dynamic range of this method of calibration that the ultimate

background pressure attainable be submitted to direct experi-

ment_l determination in an actual system.

The fifth recommended investigation may be considered

an o_erall proof of performance of the calibration system.

After having completed the above experiments, sufficient data
wiil be available to specify all known constraints and to

apply accurate corrections for all known deviations from
kinetic theory° An experiment should then be performed in

which che beam density is varied over its complete allowed

range and the beam aperture-to-detector distance is varied

o_er its complete allowed range. The calibration system
measured performance should then be correlated with predicted
perfommance_ The absel.ce of substantial deviations between

these two sets of data may be taken as proof that system per-

forma_ce is known and predictable within the prescribed accu- f
racy° Q

96

1966018675-103



Sixth, it is very desirable for calibration purposes that

the conductance properties of porous Vycor be known for several

gases over the range of temperat1_/e ,hat may be useful in the
laboratory_ An experiment should therefore be performed on a

porous Vycor diffuser in which its conductance is determined

for several additional gases and in which the temperature of

the gas source and porous plug is varied over a temperature
interval which is a substantial fraction of normal tempera-

ture for at least one gas. It is also desirable to evaluate
the problems encountered in fabrication and calibration of

small conductance (10-8 to 10-7 liters/sec) porous plugs.

The final recommendation for future work is to synthesize ,

the theory, experiment:_l data. and experience developed in
this program and apply it to the design and specification of

a complete calibration system.

i
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APPENDIX I

MEAN MOLECULAR VELOCITY IN MOLECULAR BEAM

Maxwell's distribution law for an equilibrium gas gives the

fraction of molecules with thermal velocity in the range dv to
be

2 2

£(v)dv = 4_Av2e - 6 v dv _AI.II

where

f m i 3/2
A- 12,kTl,  1.a

and

62 = m (AI.3)2kT "

Calculation of the mean molecular velocity yields the well-
known re_ult-

4-Av e-p v dv I/2

= = r 2" .z z = _ . _z.4)

ff(v)dv J,,k,e -t_ v dv ,m

Now consider an area S in this gas of volume V. The

N = nV molecules move equally in all directions, so a fraction
din/4, moves into the solid angle dw whose axis is inclined at
e to the normal to S.

The molecules that are included in a cylinder with base S
and slant height vdt will cross S in dt; therefore, the

number of molecules crossing S per unit area per unit time with
velocities in dv passing into dw at e to the normal is

F(v,e)dvd_ = n _Svdt cos e) dw" Sdt _ f (v) dv. IAI.5)

Using polar coordinates, the elementary solid angle, dm,
- may be expressed as

dm = sin e de d,. (AI.6)
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Substituting Equations _I._ an_ _1.6_ into_l.5) gives, finally,

F' (v,0)dvd0d¢ = nAv3e -B2v2 dv sin 8 cos e de de. _1.7}

3 2
Since v appears in this expression, rather than v as

in Equation _1.1_ it is seen that concerning the gas molecules
which pass through a plane from one side in a given time, the

faster molecules pass through more frequently. This result is

not surprising since the faster molecules traverse more of the

volume in a given time and thus have a greater chance of being

observed at plane S.

The mean molecular beam velocity _ , may now be
' eam

calculated for those molecules passing t_rough the area S into

the half space beyond:

vF' (v, e)dvd%d$

Vbeam f F'(v,O)dvded¢

121"/2f ® nAv4e -62"2 dv sin e cos e de d._O
• | i - - i jim •

nAv3e-B v dv sin e cos e de de

: (Ai. 81

Now substituting for 6 from Equation _1.3)and v from

Equation _l.41gives

so that the mean molecular velocity of the beam molecules is
about 18% higher than those in the volume from which the beam
effuses.

P

9g
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APPENDIX 2 I

ANALYSIS OF ORIFICE CONDUCTANCE EXPERIMENT

In order to determine the M = A/d below which deviations

from molecular flow are not negligible, the conductance of an
orifice was measured for a range of small M's. A differential

gauge was connected across an orifice and first calibrated

(unprimed symbols) for large M such that deviations are

negligible. A second orifice was then installed and the pressure

varied over the calibrated range. In this second experiment

(primed symbols), M may be varied over any chosen range by
changing the source pressure and orifice size, as will be shown

below. By maintaining S >> C, p_ is maintained negligible com-

pared with p. The experimental _etup is pictured in Figure 23

and shown schematically in Figure 22. A simplified schematic
of the experiment is g_ven in Figure 37.

t'f
Gas Molecular Pump

Source Furnace S

FIGURE 37

The following symbols are defined:
= furnace mean free path

p = furnace pressure (Tort)
d = orifice diameter

C = orifice conductance

n = conductance of I cm diameter ideal aperture
y = mean free path at I Torr

[o = source pressure (rorr)
= porous plug conductance

Sp = pumping speed of system.

I00
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The following relations are obvious:

Cp = Cpp ° (in the steady state) (A2.1)

C = nd 2 (A2o3/

!

p was restricted such that
!

Pmln = Pmln (a)

and (A20 4}
!

Pmax = Pmax ° (b)

Thus, from Equations (A2.11, /A2.2), and (A2.3}

--_ : _ : ,."v2 (A2.5)I Po C C "
P P M2C pP

(A2.Since5)P°Min corresponds to PMin, and MMax, from Equations (A2.4)and

Pomi n M2
= max ° (A2•6)

Point n M ' 2max

Also, from Equations (A2.IIand (A2.2)

Po cC_P_: cv (A2.7)= Md--a_-'
P P

so that

!
!

Po IVl

max (a2 81max = ---.--
1 I o • --

Point n Mmtn

)
F_

I01
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Thus, combining Equations (A2.6)and {A2.8),we have "-

Po M2
max = max (A2.9)- --I " :| •

P°mi n Hmi n Mmax

Now, dividing Eq,ation (A2.4blby Equation _2.4a_ gives
!

Pmax Pmax----=---- (A2Io) 'ql • •

Pm/n Pm/n

Combining Eouations (A2.i0) and {A2.2) gives
!

M M
max max _2o1_

--r--- = _ .
Hmln

Combining Equations (A2.9) and (A2.4) gives, finally,
!

Po 2 '
max = Mmin Mma_x (A2_12}

p ' 3 "
°min Mmin

POma x is the pressure above which unacceptable deviations in
occur due to transition flow in the plug., As shown in Section 3,

C_ has been experimentally determined that Pomax >- 5200 Torr.

POmi n is tbe lowest pressure for which a gauge may be certified
by the National Bureau of Standards, namely, 0.3 P.S.I. (15.5 Torr).

It therefore follows that for p = 5200 Torr,
2 , O

Mmin Mmax

= 336. ,3)
min

Now in the first experiment, it was required that Minin be
such that unacceptable deviations from free molecular flow
through the orifice did not occur. From the results of experi-

ment and theory presented in Section 4, it is known that M _> 25
for deviations to be less than one-half percent.

Thus, choosing Mmi n = 25, Equation IA2.12) becomes

!

M
max

< O.537. (A2. 14) (Mmin
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Equation (A2.13)may therefore be used to determine the
!

allowable range of Mmin _ M' _ M_a x over which departures from
molecular flow through the orifice may be investigated. As an

| _ )example, for M_l n 5 Equation (A2 14} yields the range

!

5 s M e 67.2 . _2.15)

! l

Obviousiy, there is no need for M to be increased above Mma x = 25
since deviations are negIigibIe above there.

If C is chosen to be iO-6 iiters/sec, and d as

0.I cm, th_n for argon gas at 298°K (, = 7.8 liters/sec,

7 = 5.31 x 10-3 cm) Equation(A2.2) shows the differential pressure
across the orifice will range over

2.12 x 10 -3 & P i 1.06 x 10-2 Tort. {A2.16)

The orifice conductance, C, is found from Equation{A2.3) to be
0.078 liters/sec.

To determine the orifice required in the second experiment,

note that from Equation {A2.1_

CPml. - C , (A2.17)
P P°mi n

and
f ! f

C Pmtn = Op Pomin, _2.18)

And taking the ratio of IA2.17)and IA2.18)and using Equation (A2.4)

gives
!

- P°min . {A2.19)C
P°mi n

Recalling Equations IA2.6) and (A2.11}, Equation IA2.19) becomes

, M 2 M 2
C max mr- {A2.20)

- ffi..-q-'
max Mmtn
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Then, using Equaticns _2.3) and _2.20), gives
!

d Mmi n
: -r--. (A2.2zl

Mmln

Thus, for the example cited above, the second orifice must be

0.5 cm diameter and thus will have a conductance of 1.95 liters/

sec. The required pumping speed determined fr6m S = 200 C' is
390 liters/sec.
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